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1 | INTRODUCTION

Abstract

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11
(ANKRD11) are mainly associated with the multisystem developmental disorder known
as KBG syndrome, but have also been identified in individuals with Cornelia de Lange
syndrome (CdLS) and other developmental disorders caused by variants affecting dif-
ferent chromatin regulators. The extensive functional overlap of these proteins results
in shared phenotypical features, which complicate the assessment of the clinical diag-
nosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that
the initial phenotype has evolved toward clinical features more reminiscent of a devel-
opmental disorder different from the one that was initially diagnosed. For this reason,
variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the
category of the so-called chromatinopathies. In this work, we report on the clinical
characterization of 23 individuals with variants in ANKRD11. The subjects present pri-
marily with developmental delay, intellectual disability and dysmorphic features, and all
but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The num-
ber and the severity of the clinical signs are overlapping but variable and result in a
broad spectrum of phenotypes, which could be partially accounted for by the presence

of additional molecular diagnoses and distinct pathogenic mechanisms.
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ANKRD11 was first associated with human disease when dele-

tions at 16g24.3 were identified in individuals with autism spectrum

Transcriptional regulators are key players in numerous biological pro-
cesses. Ankyrin Repeat Domain 11 (ANKRD11) is an important co-
regulator able to induce changes in gene expression by recruiting
chromatin remodelers to target genes upon interaction with specific
transcriptional repressors or activators.?> The corresponding gene
(OMIM *611192) is located at 16g24.3 and encodes a 298 kDa pro-
tein of 2663 amino acids containing five ankyrin repeats (amino acids
162-284), two repression domains (amino acids 318-611 and 2369-
2663) and one activation domain (amino acids 1851-2145).2 Due to its
unigue structure, ANKRD11 is believed to mediate both transcriptional
activation and repression.”®> ANKRD11 is best characterized for its func-
tion as a co-regulator in the developing brain, where it plays a critical role
for the proliferation of neural progenitors, for the genesis and positioning
of newborn neurons? for neuronal plasticity’ and for dendritic
differentiation.®

disorder (ASD).” Two years later, Willemsen and colleagues provided
evidence for a novel microdeletion syndrome by describing four patients
characterized by ASD, variable levels of intellectual disability and dys-
morphic features carrying interstitial deletions at 16G24.3.2 Subsequent
reports of individuals with intellectual disability, facial dysmorphism, and
ASD allowed the narrowing of the minimal common region of overlap of
this 16g24.3 microdeletion syndrome to ANKRD11 only, suggesting a
role of ANKRD11 in neurodevelopment.”*°

The first point mutations in ANKRD11 were identified in seven
individuals with KBG syndrome (KBGS, OMIM #148050).°> This is a
rare disorder named after the initials of the first three affected individ-
uals and characterized by intellectual disability, global developmental
delay, short stature, skeletal anomalies, distinctive facial features, and
macrodontia of the upper central incisors.** Since the first description

by Sirmaci and colleagues,® additional individuals with KBGS have
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been reported to carry point mutations, duplications or microdeletions
involving ANKRD11, thus pointing to ANKRD11 as the main gene
responsible for this syndrome.'?"?” Importantly, a marked inter-
familial and intra-familial phenotypical variability has been reported in
association with KBGS, indicating variable expressivity and pene-
trance.1¥2° With the falling cost and increasing accessibility of next
generation sequencing technologies and microarrays, variants in
ANKRD11 have also been reported in association with neu-
rodevelopmental syndromes other than KBGS. Specifically, an individ-
ual with an initial clinical diagnosis of Silver-Russell syndrome was
found to harbor a 348 kb microdeletion at 16g24.3 encompassing
ANKRD11 and SPG7.?8 Point mutations in ANKRD11 were also identi-
fied in subjects with phenotypes reminiscent of Cornelia de Lange
syndrome (CdLS) (OMIM #122470).27732 Loss-of-function variants in
ANKRD11 were similarly described in association with Coffin-Siris
syndrome (CSS) (OMIM #135900).2% Importantly, CdLS and CSS clini-
cally overlap to some extent with KBGS. The shared clinical features
include a variable degree of developmental delay and intellectual dis-
ability, growth retardation, limb anomalies and characteristic facial
dysmorphism.2%272C These findings suggest that variants in ANKRD11
are not necessarily associated with KBGS only, but that they are
rather linked to a larger spectrum of neurodevelopmental syndromes.
Accordingly, ANKRD11 has been described as one of the most fre-
quently mutated genes in individuals with severe developmental
disorders.3334

In this work we discuss the clinical and molecular findings of 23
individuals with variants in ANKRD11 and describe a wide spectrum

of phenotypes associated with mutations in this gene.

2 | MATERIALS AND METHODS

21 | Cohort

Individuals herein described were recruited thanks to a large interna-
tional cooperation that includes Germany, ltaly, Ireland, Colombia,
Canada, and the United States.

Procedures including subjects were initially approved by the Ethical
Committee of the University of Libeck (approval number for human
studies HLO7-158) and the Ethical Committees of the respective institu-
tions. All procedures were performed in accordance with the ethical
standards of the institutional and/or national research committee and
with the 1964 Helsinki declaration and its later amendments or compara-
ble ethical standards. Informed consent was obtained from all individuals
included in this study. An additional informed consent was collected for
the publication of subjects' photographs.

Individuals were analyzed by means of exome sequencing, gene
panels or microarrays at their respective institutions. Referring physicians
provided detailed developmental, neurological, and behavioral history of
the subjects. Variants were described on the ANKRD11 NM_013275.6
RefSeq transcript using HGVS recommendations.®> All variants have
been submitted to the ClinVar database and have been assigned the fol-
lowing accession numbers: SCV001478030-SCV001478045.

2.2 | Facial dysmorphology novel analysis

The Facial Dysmorphology Novel Analysis (FDNA Inc., Boston, MA)
technology combines facial recognition software with biological
knowledge. This technology allows to detect dysmorphic features and
recognizable patterns of facial malformations from 2D facial photo-
graphs. Face2Gene (FDNA) was used as a tool for computer analysis

of subjects' photographs (https://face2gene.com).3®

3 | RESULTS

3.1 | Individuals

The group of individuals described herein is composed of 11 females
and 12 males, with an age range extending from four to 23 years. The
median age of the initial clinical diagnosis was 6 years and 5 months,
whereas the median age of the last clinical examination was 9 years
and 3 months. Phenotypical appearance of the individuals can be
found in Figure 1.

Thirteen individuals received a clinical diagnosis of KBGS
(Individuals 1, 8, 10, 11, 14, 15, 17, 18, 19, 20, 21, 22, and 23). Three
individuals received an initial clinical diagnosis of CdLS or atypical
CdLS that was reconfirmed at a later re-evaluation (Individuals 2, 5,
and 6), while five individuals were diagnosed as CdLS during early
childhood but were reclassified as KBGS after a re-evaluation later in
life (Individuals 3, 4, 7, 9, and 12). Two individuals presented with non-
specific syndromic intellectual disability and developmental delay
(Individuals 13 and 16). A schematic representation of the diagnostic
evaluation of the individuals of the present series is provided in the
Figure S1.

An additional clinical analysis was carried out with the Face2Gene
database for all individuals for whom photographic material was avail-
able (all except Individuals 9 and 14) (Table 1). The software assigned
a likely diagnosis of KBGS to 17 out of 21 individuals (Individuals 1, 2,
3,4,6,7,8,10,11, 12, 13, 16, 17, 18, 19, 21, and 22). CdLS was con-
sidered a possible diagnosis with medium-low probability for Individ-
uals 2, 4, 6, 7, 11, and 12. No obvious diagnosis was assigned to
Individuals 5, 15, 20, and 23. Additional syndromes with medium-low
similarity scores that were contemplated as differential diagnosis in at
least five individuals of our cohort include Wiedemann-Steiner syn-
drome, fetal alcohol syndrome, PMM2-related disorder and Williams-
Beuren syndrome.

3.2 | Clinical features
An overview of the clinical features of each individual is listed in
Table 1.

Milestones in motor and verbal development were found to be
delayed for all individuals but one: sitting independently was achieved
at a median age of 12 months and walking independently at

24 months. The median age of pronouncing the first words was
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FIGURE 1

24 months. Individuals 11, 13, and 21 are currently still non-verbal at
an age of 6, 4, and 15 years, respectively.

Intellectual disability and behavioral problems were also detected
in the large majority of the individuals (85% and 68% of subjects,
respectively). The level of intellectual disability could be assessed in
four individuals and appeared moderate in one and mild in three sub-
jects. Behavioral problems ranged from shyness or inability to recog-
nize and respect personal boundaries to aggressiveness, autistic
features and attention deficit hyperactivity disorder.

The most frequent phenotypical features found in our cohort
comprise a characteristic face wide at the zygoma (70%), low anterior
hairline (65%), synophrys (65%), thick eyebrows (70%), long eyelashes
(78%), anteverted nostrils (78%), broad nasal tip (70%), thick alae nasi
(65%), long philtrum (83%), macrodontia of central incisors (65%),

Phenotypical appearance of the following individuals: (A) Individual 1, age 13; (B) Individual 2, age 8; (C) Individual 3, age 7.5;
(D) Individual 5, age 17; (E) Individual 6, age 4; (F) Individual 8, age 10; (G) Individual 10, age 9; (H) Individual 11, age 3; (l) Mother of Individual
13, age 21; (J) Individual 15, age 8; (K) Individual 16, age 13; (L) Individual 17, age 9; (M) Individual 18, age 9; (N) Individual 19, age 7;

(O) Individual 20, age 6; (P) Individual 21, age 4; (Q) Individual 22, age 5; (R) Individual 23, age 14

delayed bone age (67%), short fifth finger (61%), and clinodactyly of
the fifth finger (70%).

Additional features commonly observed include arched eyebrows
(48%), smooth philtrum (48%), thin upper vermilion (52%),
brachydactyly (48%), small hands and feet (52%), proximally set
thumbs (48%), visual problems (50%), and delayed dentition (50%).

3.3 | Clinical re-evaluation and age-dependent
phenotypical evolution

Five individuals of the present cohort were diagnosed as CdLS dur-
ing early childhood but were reclassified as KBGS after phenotypi-
cal re-evaluation (Subjects 3, 4, 7, 9, and 12). Table 2 provides an
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(A) p.(Lys635GInfs*26)
p.(Thr571Alafs*15

p.(Glu461GInfs*48) P.(GluB0OAsNfs*62)

p.(Asn1297GInfs*3)

c.7470+2T>C

p.(Lys803Argfs*5) p.(Arg1363*) p.(Thr2471_Gly2474del)
p.(Pro306Hisfs*62) P, (Tyr659*
p.(Lys2453GInfs*79);
‘ p.(ArgT898‘) p.(LysllQaArngs*lw) p4(TTvr1406*) p.(SerT1708*)
Ankyrin repeats Repression domain 1 Activation domain Repression domain 2

(aa 162-284) (aa 318-611) (aa 1851-2145) (aa 2369-2663)

(B)
exons

345 6 7 8 9 10111213

FIGURE 2

Distribution of the ANKRD11 variants at the protein and DNA level. (A) Schematic representation of the ANKRD11 protein and

its domains, with relative position of the identified variants (generated with PROSITE MyDomains®”). The ankyrin repeats are shown in blue, the
repression domains in green and the activation domain in orange. Loss-of-function mutations are depicted in red, whereas the in-frame deletion is
depicted in gray. (B) Schematic representation of the coding ANKRD11 exons in scale with the above shown protein. The ankyrin domain is
encoded by exons 6-8, the activation and first repression domains by exon 9, and the second repression domain by exons 9-13

overview of the clinical features of these individuals as well as of
the differences and commonalities between “classic” manifesta-
tions of CdLS and KBGS, with a particular focus on facial
dysmorphism.

Individuals 3 and 4 were examined only once by the referring
physicians. For both, the facial features at a first evaluation were con-
sidered reminiscent of CdLS and, consequently, a clinical diagnosis of
CdLS was assigned. After the identification of the ANKRD11 variants,
the clinical features of the individuals were re-evaluated and found
compatible with ANKRD11-associated KBGS. Individual 12 was exam-
ined twice (before and after the molecular diagnosis). No significant
phenotypical evolution was observed for this individual but, simi-
larly to Individuals 3 and 4, the re-evaluation of the clinical features
appeared consistent with the recently disclosed molecular
diagnosis.

Individuals 7 and 9 received a clinical diagnosis of CdLS at an early
age. The diagnosis of Individual 7 was mainly driven by the facial fea-
tures, which included brachycephaly, low anterior hairline, synophrys,
long eyelashes, depressed nasal bridge, anteverted nostrils, long philtrum,
thin upper lip, and micrognathia. Individual 9 was characterized by intra-
uterine growth retardation, microcephaly, brachycephaly, low anterior
hairline, synophrys, long eyelashes, and anteverted nares. At the latest
evaluation, an evolution of the phenotype was observed, primarily
related to the shape of the face and the nose. Both subjects developed a
triangular shaped face and a bulbous nasal tip. In addition, Individual
7 presented with frontal bossing and prominent cheekbones, while the

permanent dentition of Individual 9 featured macrodontia.

34 | Molecular findings

Seventeen distinct ANKRD11 variants were identified in our cohort com-
posed of 23 individuals (Figure 2), including seven out-of-frame deletions
(c.915delA, p.(Pro306Hisfs*62); ¢.1711_1723del, p.(Thr571Alafs*15);
€.2398_2401del, p.(GluB00Asnfs*62); c.2408_2412del, p.(Lys803Argfs*5);

¢.1903_1907del, p.(Lys635GInfs*26); c.1381_1384del, p.(Glu461GInfs*48);
¢.3591_3594del, p.Lys1198Argfs*119)), two out-of-frame duplications
(c.7356dupC, p.Lys2453GlInfs*79); c¢.3888dupC, p.(Asn1297GInfs*3)), five
nonsense variants (c.1977C>A, p(Tyr659*); c.2692C>T, p.(Arg898*)
c4218C>A, p(Tyrl406); c4087C>T, p.(Argl363*); c5123C>A, p.
(Ser1708*), one (c.7411_7422del, p(Thr2471_
Gly2474del)), one splicing variant (c.7470+2T>C) and one deletion
encompassing multiple exons (chr16:89,335,426-89,371,803del). All point

variants primarily involve exon 9 of ANKRD11, hence confirming the role

in-frame  deletion

of this exon as mutational hotspot of ANKRD11.17?” The four amino
acids deletion (Individual 8; c.7411_7422del; p.(Thr2471_Gly2474del)) is
located in the highly conserved C-terminal repression domain, which is
important for proteasome-mediated degradation of ANKRD11.*® This
variant might therefore impair the functional activity of the protein
and/or trigger a dominant negative effect upon dimerization with wild
type ANKRD11. The remaining loss-of-function variants are instead
predicted to activate nonsense-mediated mRNA decay, thereby resulting
in ANKRD11 haploinsufficiency.

Of the mutations herein described, 11 are novel and six have
been previously described, namely p.(Glu461GInfs*48), p.
(Lys635Glufs*26), p.(Tyr659*), p.(Glu800Asnfs*62), p.(Lys803Argfs*5),
and p.(Arg1363*). The p.(Lys635Glufs*26) variant appears to be par-
ticularly frequent in the population of individuals with developmental
disorders, as it was already reported in the literature in 10 different
families and is also shared by four unrelated individuals of our cohort
(Individuals 9, 14, 18, and 19).19-20:23:24.27.33,38-42

3.5 | Familial cases

The inheritance of the variants could be verified in 18 individuals. The
mutation occurred de novo in 15 individuals and was maternally
inherited in Individuals 4, 12, and 13. Detailed clinical data of the
mother of Individual 12 are currently not available. The mother of

Individual 4 was reported as mildly affected. She presents with short
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stature, low weight, deep-set eyes, depressed nasal bridge, large
mouth, proximally set thumbs, clinodactyly of the fifth finger and
incomplete prono-supination of the elbow. The mother of Individual
13 (Figure 1(l)) received a clinical diagnosis of KBGS and displayed a
low anterior hairline, arched and thick eyebrows with synophrys, long
eyelashes, myopia, anteverted nostrils, thick alae nasi, a large mouth
with thin upper vermilion and thick lower vermilion, macrodontia of

central incisors and mild intellectual disability.

4 | DISCUSSION

ANKRD11 plays a pivotal role in the pathogenesis of KBGS and
related disorders. Herein we report on 23 individuals carrying 17 dis-
tinct variants in ANKRD11, thereby expanding the cohort of individ-
uals with mutations in this gene. Reasons for referral of index cases
were growth retardation, facial dysmorphism and a variable degree of
developmental delay and intellectual disability. All individuals under-
went complete physical and dysmorphological evaluation from expert
clinical geneticists and all but two (Individuals 13 and 16) received a
clinical diagnosis of either CdLS or KBGS. Photographic material was
submitted to Face2Gene for an additional clinical evaluation. This
database includes an unprecedented amount of phenotypic and geno-
typic information associated with more than 10 000 diseases and has
proven to be a valuable tool for the interpretation of facial fea-
tures.364344 Face2Gene assigned a diagnosis of KBGS with high/
medium similarity scores to 17 out of 21 individuals for whom photo-
graphs were available. The remaining four individuals (Individuals
5, 15, 20, and 23) were not associated to any syndrome with a high
probability. Previous studies have proven that the Facial Dys-
morphology Novel Analysis technology could match the capabilities of
expert clinicians and in some cases also outperform them.3¢4344
Diagnosis-aiding tools are particularly important for syndromes like
KBGS, for which some of the typical and most recognizable clinical
features (i.e., macrodontia, delayed bone age, and a bulbous nasal
tip/broad nasal bridge) might appear only later in life. Our data con-
firm the importance of facial analysis technologies as a tool to assist
geneticists to assess the most appropriate clinical diagnosis in order to
facilitate management and treatment of patients.

The most frequent features reported in our cohort and in the lit-
erature comprise intellectual disability, delayed or absent speech,
motor delay, behavioral problems and a characteristic facial gestalt.
Limb anomalies, delayed bone age, feeding difficulty and visual prob-
lems are also frequently observed.'?2° Number and severity of each
of these clinical signs vary within our cohort. The specific combination
of features can therefore lead to a broad spectrum of clinical pheno-
types, ranging from mild to severe. Previous publications have shown
that the severity of the phenotype does not depend on the type or
position of the ANKRD11 variant.28-2° Comparison of clinical signs of
all reported cases of recurrent mutations (in our cohort and in previ-
ously reported individuals) as well as of familial cases has confirmed
the absence of a linear genotype-phenotype correlation and

highlighted the existence of variable penetrance and intra-familial

variability.2° Importantly, the possibility of multiple molecular diagno-
ses should also be taken into account for an appropriate evaluation of
these phenotypes, as they can influence the phenotypical appear-
ance.*® The majority of our individuals was analyzed by targeted gene
panel and we are therefore unable to exclude the presence of addi-
tional variants.

Variants in ANKRD11 have been mainly described in association
with KBGS.>1%:20:27 Accordingly, based on a recent review, 171 out of
228 individuals with ANKRD11 variants reported in 38 different stud-
ies were formally diagnosed as KBGS.>* However, variants in this
gene have also been identified in individuals with neurodevelopmental
disorders other than KBGS, namely CdLS and €55.23%7732 These syn-
dromes share some overlapping clinical features that may be difficult
to discern from one another.12#447 Eight of the individuals reported
here received an initial clinical diagnosis of mild CdLS or atypical
CdLS. However, after re-evaluation later in life, a KBGS diagnosis was
assigned to five of these individuals. Notably, for two of them, the pri-
mary phenotypical differences between the first and the last clinical
evaluation were related to the shape of the face and the region of the
nose, a finding that is compatible with the physiological progression
into adolescence/adulthood. Together with a previously reported
CdLS subject with a variant in ANKRD11,%° our cohort points to the
existence of an age-dependent phenotypical evolution from CdLS to
KBGS from infancy to adolescence, mainly concerning nose and facial
contour. Therefore, clinical follow ups are crucial for the assessment
of the proper clinical diagnosis.

Importantly, the protein complexes so far associated with CdLS,
CSS, and KBGS are all involved in the regulation of transcription and
chromatin structure. Epigenetic modifications and transcriptional dys-
regulation are therefore considered a key molecular feature of these
disorders.>*® ANKRD11 can control chromatin accessibility and medi-
ate transcriptional regulation upon interaction with histone
deacetylases and nuclear receptors.**° The cohesin complex, respon-
sible for the onset of CdLS, is important for gene expression, DNA
repair and long-range interactions between distant genomic regions.*®
The CSS-associated SWItch/Sucrose Non-Fermentable (SWI/SNF)
complex is well known for chromatin remodeling.*” Notably, the
SWI/SNF complex is known to directly interact with the cohesin
loader. In yeast, the SWI/SNF complex recruits the cohesin loader to
nucleosome-free regions that the cohesin loader subsequently helps
to maintain.> A direct interaction between ANKRD11 and these two
protein complexes has instead not been reported yet. The substantial
functional overlap that characterizes these proteins as well as the
direct physical interactions that have been reported for some of them
could be found accountable for the shared clinical features observed
in individuals with different neurodevelopmental disorders. The
increasing accessibility of next generation sequencing technologies
will allow the identification of additional variants in ANKRD11 in indi-
viduals with clinical diagnoses different from KBGS. Correspondingly,
several variants in ANKRD11 were identified in individuals with severe
undiagnosed developmental disorders and/or intellectual disabil-
ity.33'34’52 Also in this cohort, variants in ANKRD11 have been

reported in KBGS subjects but also in individuals with nonspecific



PARENTI ET AL.

intellectual disability or with CdLS. For this reason, variants in this
gene should be ascribed to a more ample group of neu-
rodevelopmental disorders that fall within the category of
chromatinopathies rather than to KBGS per se.>>** In line with the
recently proposed dyadic approach for the description of diagnostic
entities,®® the disease phenotypes observed in association with vari-
ants in ANKRD11 “ANKRD11-related

chromatinopathies” or neurodevelopmental

could be defined as
“ANKRD11-related
disorders.”

The growing number of variants in ANKRD11 and the varying
severity of behavioral and developmental phenotypes associated with
these variants make the understanding of the causative mechanisms
particularly important. Since the levels of ANKRD11 are tightly regu-
lated during the cell cycle, the most likely pathogenic mechanism is
haploinsufficiency.*® However, analysis of ANKRD11 transcript levels
in cell lines of patients has revealed escape from nonsense-mediated
mMRNA decay to some extent.*>*® Furthermore, some variants might
also lead to a dominant negative pathogenic mechanism due to a lack
of proteasome-mediated degradation of the truncated protein. This
proposed mechanism depends on the dimerization between the N-
terminal repression domains of the wild type and mutant ANKRD11
when the degradation of the mutant protein is impaired by the disrup-
tion of the C-terminal degradation signals.18 The potential that a
greater understanding of the molecular mechanism may lead to even-
tual therapeutic insights represents an exciting prospect.
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