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ABSTRACT One of the main challenges of glucose control in patients with type 1 diabetes is identifying
a control-oriented model that reliably predicts glycemia behavior. Here, a review is provided emphasizing
the structural identifiability and observability properties, and surprisingly, it is shown that few of them
are globally identifiable and observable at the same time. Consequently, a general proposal is developed
to encompass four linear models according to suitable assumptions and transformations. After the corre-
sponding structural properties analysis, two minimal model structures are generated, which are globally
identifiable and observable. Then, the practical identifiability is analyzed for this application showing that
the standard collected data in many cases do not have the necessary quality to ensure a unique solution
in the identification process even when a considerable amount of data is collected. The two minimal
control-oriented models were identified using a standard identification procedure using data from 30 virtual
patients of the UVA/Padova simulator and 77 diabetes care data from adult patients of a diabetes center. The
identification was performed in two stages: calibration and validation. In the first stage, the average length
was taken as two days (dictated by the practical identifiability). For both structures, the mean absolute
error was 16.8 mg/dl and 9.9 mg/dl for virtual patients and 21.6 mg/dl and 21.5 mg/dl for real patients.
For the second stage, a one-day validation window was considered long enough for future artificial pancreas
applications. The mean absolute error was 23.9 mg/dl and 12.3 mg/dl for virtual patients and 39.2 mg/dl and
36.6 mg/dl for virtual and real patients. These results confirm that linear models can be used as prediction
models in model-based control strategies as predictive control.

INDEX TERMS Glucose dynamics, Identifiability, Practical Indentifiability, Biomedical systems, Model
identification

I. INTRODUCTION

INSULIN and glucagon play a key role in glucose home-
ostasis. Insulin promotes glucose storage as glycogen and

inhibits endogenous glucose production (EGP) while also
promoting glucose utilization in insulin-dependent tissues.
As a counterregulatory hormone, glucagon opposes to insulin
action, actively stimulating hepatic glycogenolysis and glu-
coneogenesis and hence EGP to enhance a rapid rise in the
systemic glucose concentration in postabsorptive and fasting
periods, respectively. Unfortunately, the above is lost in Type

1 Diabetes (T1D). T1D is a chronic disease characterized
by insulin deficiency due to the autoimmune destruction
of the pancreatic beta cells, leading to an alteration in the
natural glucose regulatory system [1]. While T1D mainly
affects the endogenous insulin production, its absence (and
even its exogenous administration) blunts the remaining
glucose-related metabolic processes. In this regard, people
with T1D face a lifelong optimization problem: limiting their
exposure to hyperglycemia while simultaneously avoiding
hypoglycemia [2]. Poorly controlled T1D increases the risk
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of short- and long-term complications such as diabetic ke-
toacidosis, retinopathy, nephropathy, and even death. [3].

Functional insulin therapy (FIT) deals with the accurate
titration of both short and long-term multiple daily injections
(MDI) of insulin as a function of daily glucose levels, pre-
prandial glucose levels, and estimated carbohydrate (CHO)
intake. According to the Diabetes Control and Complications
Trial, FIT was related to a threefold increase in severe hypo-
glycemic risk [3]. Nevertheless, the benefits from transition-
ing the FIT from MDI to Sensor Augmented Pump (SAP) are
widely recognized, reducing the variability of daily glucose
profiles and the incidence of chronic complications [3]–[5].

A second treatment for T1D that is under continuous
development is based on Artificial Pancreas Systems (APS).
APS consist of a sensor-augmented insulin pump with a
closed-loop control strategy to automatically titrate the pa-
tient’s insulin infusion rate to keep blood glucose (BG) levels
within safe limits. Model-based control strategies embedded
into APS, such as Model Predictive Control (MPC), have
gained considerable attention during the last decade [6].
MPC, rather than a single strategy, encompasses a flexi-
ble control paradigm including (i) an explicit mathematical
model to predict the variable(s) of interest and (ii) an online
optimization problem aiming at finding the best insulin in-
jections subject to physical and design constraints over the
model variables.

The so-called minimal models or control-oriented models
target a simple mathematical description (few ordinary dif-
ferential equations and parameters) to evaluate and optimize
insulin therapies and design model-based control strategies,
i.e., these models are usable for both closed-loop control in
APS and open-loop control in FIT. The control-oriented mod-
els include black-box models developed from experimental
data but quite limited to properly represent the physiology of
a patient [7], [8] and gray-box models based on physiological
knowledge and real data [9]–[12]. Nevertheless, despite the
number of models for T1D treatment, model individualiza-
tion remains a challenge for three main reasons: (i) the error
in CGM devices, (ii) the uncertainty linked to self-reported
information from users (meal and exercise records, for in-
stance) and (iii) physiological variations, as the circadian
rhythm, that affect the glucose regulatory system. Therefore,
to minimize the overall model uncertainty, an appropriate
model individualization should be performed [13].

Model identification/individualization in diabetes tech-
nology deals with finding the model parameters that best
describe the available data from a particular subject. The
authors in [14] presented an identification method in which
the glucose-insulin model is rewritten in terms of integrals
to individualize the insulin sensitivity and the time-varying
fractional clearance of plasma glucose at basal insulin. In
[15] the linearized UVA/Padova model was individualized
around a basal working point using a parametric identifica-
tion technique driven by constrained optimization where the
constraints are imposed over low and high glycemic values. A
constrained optimization problem was also used in [16]–[18]

where the sum of squared residuals was minimized to identify
a minimal black-box model. This identification method was
later improved in [19] by introducing a data-driven multiple-
model predictor that uses three different identified models for
specific periods of the day. In [20], an adaptive identifica-
tion procedure was provided by recomputing the parameters
with every new measurement using a constrained weighted
recursive least squares method with a time-varying forgetting
factor λ. In [13] three minimal models were identified by
minimizing the mean square error concerning the CGM
measurements. In addition, a long-term glucose prediction al-
gorithm based on a physiological model and a deconvolution
technique using CGM data was presented in [21] by adding
information about meal absorption to enhance prediction
accuracy and using a constrained optimization technique that
minimizes the mean absolute relative difference to identify 3
of the 10 parameters of the model.

In the context of T1D, other methods have been used as
interval analysis where the uncertainties are considered with
interval models by minimizing the sum of squares of the
distance between the samples and the predicted envelope
[22], [23]. Alternative identification strategies have also been
proposed in other applications. For instance, to model pros-
thetic hand fingers, an online identification algorithm that
uses Recursive Least Squares was implemented to identify
the parameters of a Takagi-Sugeno-Kang fuzzy model [24],
and also a recurrent neural network was introduced in [25].

Although model individualization in the T1D field has
been typically carried out informally [13], neglecting the
lack of identifiability either from the structure of the model
(structural) or from the quality of experiments/ available data
(practical) [26].

In this manuscript, a comprehensive review of control-
oriented models for both hybrid and fully automated APS
leveraging typical user-related physiological information
is provided [10]. The review focuses on gray-box linear
control-oriented models. From these models, four well-
acknowledged linear models are analyzed in terms of model
structure, identifiability and observability, and their relation
with FIT. It is shown that most of these models are not
fully identifiable and observable simultaneously, which im-
plies that the parameters obtained in an overall identification
procedure are not reliable. As a consequence of this analysis,
the second contribution is the proposal of model structures
that encompass the previous four linear models for the sake
of information integration. Two minimal model structures
are generated, which are globally identifiable and observ-
able. Besides, a discussion about practical identifiability is
addressed, including a methodology to select portions of
the data best suited for identification. This methodology is
validated with the two model structures using data from 33
virtual subjects and 77 real subjects.

The paper is organized as follows. Section II provides a
review of gray-box control-oriented models in the literature.
In Section III, four linear control-oriented models [9]–[12]
are analyzed and the structure of a general model is presented
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including the relation with personalized tools for FIT. In
Section IV, the identifiability and observability of all five
models are analyzed. In Section V, the results are analyzed,
and the collected data and the identification method used are
described. In addition, long-term validation of the identified
model is carried out with in-silico and clinical data, the per-
sonalized tools for FIT are assessed, and the performance of
open-loop control is also discussed. Finally, the conclusions
are summarized in Section VII.

II. CONTROL-ORIENTED MODELS: A REVIEW
This section presents a chronological review of the control-
oriented gray box models that stand out in the literature.

The introduction of the so-called glucose-insulin Minimal
model (MM) is attributed to the pioneering work of Cobelli
and Bergman at the end of the 1970s [27], [28], although
earlier approaches to modeling the glucose homeostasis were
already acknowledged [29]. The term ‘minimal model’ was
coined concerning the model’s level of complexity [30]. It is
worth pointing out that, despite its importance in nowadays’
diabetes technology, the model was initially intended to char-
acterize the insulin sensitivity in health during an Intravenous
Glucose Tolerance Test (IVGTT) instead of designing model-
based control systems for T1D. This gray-box model is non-
linear, and it is composed of two separate parts: the first part
describes glucose disappearance as a function of insulin in a
remote compartment and consists of two ordinary differential
equations. The second part consists of a single differential
equation and describes plasma insulin concentration when
BG concentration is a known forcing function. According to
the authors, despite the model’s simplicity, the identification
of the model cannot be performed with the whole model. It
must be done in two parts, which generally is not recom-
mended.

In [31], the physiological nonlinear model known as Au-
tomated Insulin Dosage Advisor (AIDA) was introduced to
describe glucose-insulin interaction in subjects with T1D.
The model consists of four differential equations to account
for the change of glucose concentration, the change of plasma
insulin concentration, the ’active’ insulin pool (which serve
to describe the delay in insulin action), and the amount of
glucose in the gut following the ingestion of a meal. With
this model, glucose uptake is linear when insulin is varied
at fixed glucose levels, but it saturates as glucose increases
at fixed insulin. A comparison of the Bergman´s MM, the
AIDA, and the maximal model developed by [32] can be
found in [33]. The comparison was performed only for the
glucose/insulin subcomponent (glucose absorption due to
meals was not considered) and included the IVGTT in the
absence and presence of an incremental change in insulin.
Results showed that the three models accurately followed the
BG profile in the presence of an incremental insulin response
but failed to predict BG levels in the absence of insulin.

Other contributions followed the line of Bergman’s MM
and achieved improved versions of it. In [34], the authors ana-
lyzed previous linear compartmental and non-compartmental

models for glucose kinetics at steady state. From the compar-
ison, non-compartmental models showed to have structural
errors that difficult a physiological insight, especially when
insulin is elevated. In contrast, despite being more demanding
in terms of modeling and computational effort, compartmen-
tal models allow better use of informational content of kinetic
data. In [35], [36], a nonlinear two-compartment MM of glu-
cose kinetics was introduced for labeled IVGTT. This model
was required since the monocompartmental representation
available at the time provided a non-physiological pattern
of hepatic glucose production. Thus, two glucose pools were
used to describe glucose kinetics, one for plasma plus insulin-
independent tissues and the second one for insulin-dependent
tissues slowly exchanging with plasma. This model was
then improved in [37] to obtain a more reliable insulin-
independent glucose disposal portrait and more precision
for metabolic indexes. The improved version of the two-
compartment model relied on expressing insulin-independent
glucose disposal as a fraction of steady-state glucose disposal
instead of considering it as a constant. In addition, the authors
in [38] added a model for the liver glucose metabolism
into the two-compartmental MM, to describe the endogenous
glucose kinetics during IVGTT.

A large number of papers have dealt with modified ver-
sions of Bergman’s MM. The model proposed in [39] stands
out since it introduces a simple delay-differential model to
study glucose-insulin homeostasis as a single dynamical sys-
tem. It eliminates the insulin remote compartment included in
Bergman’s MM, and therefore, a single identification scheme
is required, solving the problem previously described of the
two-step identification scheme for Bergman’s MM. However,
the model’s equilibria do not represent the reality of subjects
with T1D because the basal rate depends on glycemia and
stabilizes the system after a meal without an extra insulin
injection. This last problem is not consistent with FIT and
has appeared in many subsequent models. Models in [40]–
[42] included a generalization of De Gaetano’s dynamical
model and alternative ways of incorporating the time delay
associated with the insulin action.

In [43], a modified MM for T1D was formulated by
considering continuous insulin infusion, meals, and intra-
venous glucose administration (as in IVGTT) and with the
feature of representing the circadian insulin sensitivity. [44]
also presented a model for T1D where Bergman’s MM was
modified by replacing the endogenous insulin secretion with
an exogenous insulin infusion. Also, an extended MM was
formulated for the critically ill at the intensive care unit.
Other works presenting models for glucose-insulin dynamics
in critically ill patients are presented in [45]–[47] following
the same basic structure of the MM. An extension of the MM
to include plasma-free fatty acid dynamics with a primary
focus on subjects with T1D was introduced in [48].

In [49], [50], a linear MM was presented and evaluated
with data from subjects with T1D using a continuous subcu-
taneous insulin infusion (CSII). This model consists of two
linear differential equations and represents the interaction
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of plasma glucose with insulin action. Although a rate of
appearance of absorbed glucose is considered in the model,
no dynamical model is added for the glucose appearance
due to meals. This linear model showed similar results to
Bergman’s MM. In fact, it was shown that both models could
not follow complex situations in T1D as several insulin bolus
injections, incorrect insulin dosage, or the absence of insulin
supply. In [51], the Medtronic Virtual Patient model was pre-
sented. This nonlinear model consists of 5 equations that in-
clude three-compartment submodels coupled with Bergman’s
MM to describe plasma insulin concentration in response
to subcutaneous insulin delivery and insulin effect, and a
two-compartment model to describe glucose appearance fol-
lowing a meal based on the maximal model developed by
Hovorka [52], [53].

The last decade has seen tremendous progress on APS.
This upswing can be attributed to advances in computer
simulation, continuous glucose monitoring (CGM), insulin
pumps, mobile platforms, and control systems. Regarding
the latter, the analysis and development of control-oriented
models of the glucose-insulin and glucose-insulin-glucagon
systems have played a key role in model-based control
strategies. In [54], [55], a first-order with integrator and time
delay continuous transfer function was proposed to account
for the effect over BG of both, the CHO consumption and
bolus insulin infusion. However, BG and insulin input are
deviation variables around basal values. The model can be
individualized with few FIT-related parameters. Following
this idea, [9], [56]–[58] introduced a second-order with inte-
grator transfer function to describe subjects under MDI. Even
though initially the authors considered two different poles
for each insulin and CHO subsystem, they observed that the
BG behavior is similar when considering equal poles in each
subsystem, so a reduced model is finally obtained with four
parameters to be identified. In [59], a second-order transfer
function plus a stochastic term was proposed to account for
unknown factors not previously considered and useful for
robust and adaptive control strategies.

In [60], the structural identifiability problem of Bergman’s
MM is discussed, which basically relies on fixing the basal
glucose and insulin parameters to be identifiable. Thus,
the authors presented an alternative identifiable nonlinear
control-oriented model to describe plasma insulin action
on glucose. The model consists of 3 Ordinary Differential
Equations (ODE) and 4 parameters. In [61], a linear model
with three state variables (insulin, glucagon, and glucose
concentration) was developed. The control input is intra-
venous insulin, but despite the state and inputs’ physiological
meaning, the parameters of the linear system have a non-
physiological meaning. [62] extended the Bergman’s MM to
account for subcutaneous insulin infusion and meal intake
based on Hovorka’s model. Then, in [63], [64], the extended
MM with meal absorption and CSII was also augmented
with stochastic terms to include intra-patient variability. Ad-
ditional works until 2013 can be seen in the review by [65].
In [66], two linear models were developed, and their steady-

state response analyzed, arguing that the equilibrium of BG
levels should depend on the initial BG condition. From this
work, the linear model with improved BG predictions and
parameter correlation with therapy parameters has four pa-
rameters to identify as the one in [56]. Regarding bihormonal
APS, Lv et al. proposed eight models including linear and
nonlinear representations of the subcutaneous transport of
exogenous glucagon [67], also in [68] a nonlinear control-
oriented model including glucagon was detailed. A minimal
model of 6 ODE introducing the effect of physical activity
was presented in [69]. Additional models up to 2015 can be
seen in the review by [70].

In [10], a linear control-oriented model with close-to-
reality equilibria and FIT-related parameters for subjects
with T1D was presented. Its main feature consists of consid-
ering insulin sensitivity as a constant (i.e., not as a function
of glucose) in the range of normoglycemia, hypoglycemia,
and hyperglycemia. However, the insulin concentration and
CHO absorption equations are given as second-order ODEs.
In [71], a better state-space realization was performed where
all variables have physiological meaning. The model was also
analyzed and compared regarding the identifiability property
with a subcutaneous oral glucose MM and an intensive
control insulin-nutrition-glucose model in [13]. The authors
found that any of the three models are structurally identifi-
able. Several parameters must be fixed to fulfill this property.

Adopting a similar approach than [10], in [11], a linear
glucose-insulin model with 3 sub-models (5 compartments)
was developed. Based on the maximal model in [52], the
authors got rid of one of the insulin compartments to avoid
identifiability issues. In addition, in [72] 6 models were
proposed (3 of them are linear) to characterize exogenous in-
sulin’s influence on postprandial glucose kinetics. However,
this time, the accessible compartments represented plasma,
and the non-accessible compartments corresponded to other
tissues as the interstitium. Minimal physiological models
similar to the Medtronic virtual patient [51] but extended
with the model of CGM noise and with stochastic terms to
account for unknown factors were developed in [73], [74].

A brief review of physiological models, including some
variants of the MM and Hovorka’s model, was presented
in [75], and a comprehensive review of different models
including an analysis of 38 control-oriented models can be
found in [76]. Another linear mathematical model with the
aim of simulating virtual patients for several days (19 days)
was developed by [12] including two-compartments for each
subsystem of glucose, insulin, and CHO. A control-oriented
linear parameter-varying model was developed in [77] con-
sisting of a three-order transfer function, and then augmented
to include the insulin-resistant effect of hyperinsulinemia in
[78]. Also, a nonlinear model with four ODE to describe
the interaction between insulin, glucose, free fatty acid, and
growth hormone in T1D was introduced in [79].
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III. MODEL STRUCTURE ANALYSIS
The following sections aim to analyze some properties of
control-oriented models that stand out for their characteris-
tics.

Keeping in mind that a good MM is not a large-scale one
and has desirable features as: (i) it is physiologically based;
(ii) its parameters can be estimated with reasonable precision
from a single dynamic response of the system; (iii) the
parameters vary within physiologically plausible ranges; and
(iv) the model has the ability to describe the dynamics of the
system with the smallest number of identifiable parameters
[30].

Additionally, as the overall nonlinearities of the dynamics
of glucose in terms of insulin delivery and meal consumption
have only a marginally effect [10], [50], [80], and as a linear
structure is beneficial in the development of control strategies
due to its simplicity, then the focus of this paper is on linear
control-oriented models. From the state-of-art, four models
are selected for satisfying these characteristics: Del Re’s
model [56], Magdelaine’s model [10], Hovorka’s model [11],
and Grosman’s model [12]. These models are discussed, and
then a general model which summarizes their properties is
proposed.

Each model’s structure is depicted in Table 1 along with
their state-space representation.G denotes the BG concentra-
tion, I1, I2 are the insulin in the first and second compartment
(interstice and blood), and D1, D2 denote the glucose con-
centration due to meals in the first and second compartment.
The inputs of the models are the amount of ingested CHO
r(t) and the exogenous insulin delivered u(t). A detailed
description of the parameters and units of each model can
be found in the corresponding reference.

A. LITERATURE MODELS
We start the analysis with the model presented in [56],
denoted here as “Del Re’s model”, which, as stated by the au-
thors, was intended for robust control design in MDI-treated
subjects. The model comprises two transfer functions denot-
ing the glucose response to a meal and an insulin injection,
respectively. Table 1 shows the model’s realization, where
only four parameters were used, implying, for instance, the
time constant of insulin release being equivalent to the one
needed for its degradation (a similar assumption is made for
the meal dynamics).

We further consider the model presented in [10], denote
here as “Magdeleine’s model”. This is a simple model aimed
at representing realistic behaviors of a subject with T1D,
focusing on the long term. The model describes BG excur-
sions after meal intake while treated with insulin therapy.
Five state variables and six parameters compose the model
structure. The main property of this model is that each
glycemia equilibrium corresponds to a unique value for the
basal level, which is consistent with FIT because the basal
level does not depend on the BG value. One of the model’s
main features is that it keeps an unstable equilibrium in the
fasting state, as observed in T1D. Unlike del Re’s model

[56], this model includes the term K1 − Kb corresponding
to endogenous glucose production as well as the insulin-
independent glucose consumption. Unlike many other lin-
ear/linearized models of the glucose-insulin system, the state
variables in this model are absolute (no deviation). Table 1
provides the block diagram and describing equations of the
model.

The third model, denoted here as “Hovorka’s model, "
is introduced in [11]. It aims to produce realistic multi-day
glycemic excursions of subjects with T1D with day-to-day
variability in insulin therapy and meals. The inputs of the
model are insulin dose and the amount of CHO intake. The
structure of this model has five compartments, and thus, five
state variables. Unlike previous models, this model incorpo-
rates a glucose self-regulation parameter K associated with
the renal clearance of glucose at high BG levels or counter-
regulatory hormone effects at low BG levels, leading to
glycemia stabilization. This is not consistent with the reality
of patients with T1D because extra boluses of insulin would
not be necessary after a meal; it would be enough to wait to
self-regulate the levels. However, it can be justified if con-
stant K is small enough, implying a long stabilization time
such that it cannot be reached during postprandial periods,
so in this case, it is a consistent model with reality. Table 1
provides the block diagram and describing equations of the
model.

Finally, the fourth model is presented in [12] and denoted
as "Grosman’s model". It is a mathematical model formulated
to simulate virtual patients’ glucose dynamics derived from
the information provided by the Medtronic MiniMed Care-
Link sensor-augmented pump during 19 simulation days.
This linear model consists of three two-compartment sub-
models for glucose, insulin, and CHO dynamics, yielding a
model of 6 states and 9 parameters. The model is very similar
to the three previously described. As Hovorka’s model, the
self-regulation term 1/τ3 has been included, and it considers
equal poles for the meal absorption sub-model. However, the
model considers different poles for the insulin dynamics and
has an additional state for subcutaneous BG concentration
Gsc. The block diagram and describing equations of the
model are provided in Table 1.

B. A GENERALIZED MODEL

For the sake of simplicity, we present a generalization of
the above models to condense the information and ease the
analysis. To that end, let us consider the following affine
linear model with state-space representation

Ẋ(t) = AX(t) +BU(t) + E
Y (t) = CX(t)

(1)

with
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TABLE 1: Structure of the models

Model Block diagram ODEs
ine

del Re Ġ(t) = K1I2(t)−K2D2(t)

İ2(t) =
I1(t)

T1
−
I2(t)

T1

[56]
İ1(t) =

r(t)

T1
−
I1(t)

T1

Ḋ2(t) =
D1(t)

T2
−
D2(t)

T2

Ḋ1(t) =
u(t)

T2
−
D1(t)

T2

ine
Magdelaine Ġ(t) = −KSII(t) +K1 −Kb +D(t)

[10] T 2
u

d2I(t)

dt2
+ 2Tu

dI(t)

dt
+ I(t) =

Ku

Vi
u(t)

T 2
r

d2D(t)

dt2
+ 2Tr

dD(t)

dt
+D(t) =

Kr

Vb
r(t)

ine
Hovorka Ġ(t) = −SI(I(t)− Ib) +D(t)

−K(G(t)−Gb)

[11] İ1(t) = −
1

tmax,IA
I1(t) +

u(t)

60

İ2(t) =
1

tmax,IA
(I1(t)− I2(t))

I(t) =
1000I2(t)

tmax,IAMCRIW

Ḋ1(t) = −
1

tmax,G
D1(t) + δtj (t)r(tj)

Ḋ2(t) =
1

tmax,G
(D1(t)−D2(t))

D(t) =
5.556AGD2(t)

tmax,GVGW

ine

Grosman Ġsc(t) = K3G(t)−
1

τ4
Gsc(t)

[12] Ġ(t) = K2 +D2(t)−KII2(t)−
1

τ3
G(t)

İ2(t) = I1(t)−
1

τ2
I2(t)

İ1(t) = u(t)−
1

τ1
I1(t)

Ḋ2(t) =
1

τ5
D1(t)−

1

τ5
D2(t)

Ḋ1(t) = K1r(t)−
1

τ5
D1(t)

ine
Generalized Ġ(t) = −θ6G(t)− θ2I2(t) + θ4D2(t) + θ1

İ2(t) = −
1

θ3a
I2(t) +

θ7a

θ3a
I1(t)

İ1(t) = −
1

θ3b
I2(t) +

θ7b

θ3b
u(t)

Ḋ2(t) = −
1

θ5a
D2(t) +

θ8a

θ5a
D1(t)

Ḋ1(t) = −
1

θ5b
D2(t) +

θ8b

θ5b
r(t)
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TABLE 2: Relationships between model parameters

Model Parameters
Glucose subsystem Insulin subsystem Digestion subsystem

ine General θ1 θ2 θ4 θ6 θ3a θ3b θ7a θ7b θ5a θ5b θ8a θ8b
ine Del Re 0 K2 K1 0 T2 T2 1 1 T1 T1 1 1

Magdelaine K1 −Kb
KSIKu

Vi

Kr

VB
0 Tu Tu 1 1 Tr Tr 1 1

Hovorka SIIb +KGb
SI

1000
60

MCRIW

5.556AG

VGW
K tmax,IA tmax,IA 1 1 tmax,G tmax,G 1 1

Grosman K2 KI 1 1/τ3 τ2 τ1 τ2 τ1 τ5 τ5 1 K1τ5

A =


−θ6 −θ2 0 θ4 0

0 −1/θ3a θ7a/θ3a 0 0
0 0 −1/θ3b 0 0
0 0 0 −1/θ5a θ8a/θ5a
0 0 0 0 −1/θ5b



B =


0 0
0 0

θ7b/θ3b 0
0 0
0 θ8b/θ5b

 , E =


θ1
0
0
0
0

 , U(t) =

[
u(t)
r(t)

]

and C =
[
1 0 0 0 0

]
. The state is given by X =[

X1, · · · , X5

]T
=
[
G I2 I1 D2 D1

]T
, and the in-

puts are insulin rate u(t) and CHO intake rate r(t). The
ODEs of the model and the corresponding block diagram
are shown in Table 1, where θ1 is the net balance between
the endogenous glucose production and insulin independent
glucose consumption, θ2 is the insulin sensitivity, θ3a and
θ3b correspond to the time constants of insulin diffusion
in the first and second compartment, respectively, θ4 is the
conversion constant of CHO to glycemia, θ5a and θ5b are
the time constants of CHO diffusion in the first and second
compartment, respectively, θ6 is the glucose self-regulation
fractional rate, θ7a and θ7b are the insulin bioavailability in
the first and second compartment, and θ8a and θ8b are the
CHO bioavailability in the first and second compartment.

This representation summarizes the previous models and
adds some degrees of freedom by considering different time
and bioavailability constants for each compartment. The rela-
tions between the original parameters of the analyzed models
with respect to the new ones are shown in Table 2.

C. FUNCTIONAL INSULIN THERAPY
FIT is a pedagogical approach of insulin therapy for sub-
jects with T1D. It empowers the patient to take control
over the treatment based on his/her clinic history, lifestyle,
diet, and everyday activities [81]. FIT involves frequent self-
monitoring of blood glucose (6 to 8 daily controls), multiple
daily insulin injections, and the subject’s therapeutic and
nutritional education. The main parameters of FIT are the
basal insulin infusion rate (ub) and the fast-acting insulin
(bolus), which further depend on correction factor (CF),
raise, carbohydrate-to-insulin ratio (CIR), and insulin-on-
board (IOB). Commonly, these tools are empirically calcu-

lated by the physician using a population approximation (see
[82]), leading to a long process to achieve the specific value
of the subject [83]. One of the purposes of mathematical
models for T1D treatment along with the subject’s data and
computation tools is to estimate subject-specific tools for FIT.
These tools can be computed with the general model’s param-
eters, and therefore, with the other four models’ parameters
by using the equivalences in Table 2. The description of each
tool for FIT and its mathematical expression are presented in
Table 3.

IV. STRUCTURAL IDENTIFIABILITY AND
OBSERVABILITY
The goal of an identification process is to provide a value for
every parameter such that the model accurately describes the
data collected for a given user. To that end, identifiability and
observability of the model are first analyzed. Identifiability
can be seen as a particular observability case, in which the
initial states are considered model parameters, then, a system
is defined identifiable if all its parameters are observable [84].

Structural identifiability refers to the theoretical possibility
to find a unique solution (set of parameters θ) in the identi-
fication problem, where confidence intervals are not infinite
[85]. It is a property of the model and cannot be improved
through measurements since it does not depend on them.

Different methods and tools assessing structural identifi-
ability can be found in [86], [87]. In this work, Generating
Series for Testing Structural Identifiability (GenSSI) tool was
used for structural identifiability analysis, which relies on
identifiability tableaus to determine whether the property is
either local or global. The tableaus graphically represent the
fulfillment of the conditions of structural identifiability. It has
as many rows as nonzero coefficients and as many columns as
parameters to identify. When the tableau is a full-rank matrix,
at least local identifiability is guaranteed.

A. LITERATURE MODELS
Figures 1, 2, 3, and 4 show the reduced tableaus of the four
analyzed models when considering the complete set of pa-
rameters and initial conditions. A summary of the outcomes
is shown in Table 4. Results show that the only globally
structurally identifiable and simultaneously observable is Del
Re’s model because its reduced identifiability tableau is a
full-rank matrix of order 8. Perhaps, the above fact can
be explained by the low number of parameters. However,
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TABLE 3: Relationship of the general model with tools for FIT

Tool for FIT Description Equation

ine Basal Insulin (ub) Constant insulin infusion rate required to maintain glycemia at
a target GTar during fasting. ub =

θ1

θ2θ7aθ7b
−

θ6

θ2θ7aθ7b
GTar

ine Correction Factor
(CF)

Also known as insulin sensitivity. It represents the glycemic
drop per unit of insulin (1U) when the basal insulin is correctly
set.

CF = θ2θ7aθ7b

ine Raise (RF) Represents the increase of BG levels due to the action of 1g of
CHO, when the basal insulin is correctly set. RF = θ4θ8aθ8b

ine Insulin to CHO ratio
(CIR)

Represents the amount of grams of CHO that compensate for
a unit of insulin (1U), when the basal is correctly set. CIR =

CF

RF
ine Insulin on Board
(IOB)

Remaining insulin in the blood, due to the last insulin injection
applied. IOB(t) =

θ2θ7aθ7b

θ3a − θ3b
(e−t/θ3a − e−t/θ3b ) U0

IOB(t) =
θ2θ7aθ7b

θ23a
t e−t/θ3a U0, if θ3a = θ3b

ine Bolus calculator Insulin infusion rate recommended to compensate for meal
intake and deviations to target GTar . ubolus(t) =

G(t)−GTar
CF

+
gCHO

CIR
− IOB(t)

T1 T2 K1 K2 x20 x30 x40 x50

1

2

3

4

5

6

7

8

FIGURE 1: Reduced identifiability tableau - Del Re’s model

KSI K1 Tr Kr Tu Ku x20 x30 x40 x50

1

2

3

4

5

6

7

8

FIGURE 2: Reduced identifiability tableau - Magdelaine’s
model

simpler models tend to overlook important phenomena. Hov-
orka’s, Magdelaine’s, and Grosman’s models do not satisfy
the global identifiable and observable (GIO) condition when
only considering the CGM data as output and the CHO intake
and insulin doses as input signals. The lack of identifiability
can be explained from correlated parameters and ambiguous

SI Xb K Gb tmaxG AG tmaxIA x20 x30 x40 x50

1

2

3

4

5

6

7

8

FIGURE 3: Reduced identifiability tableau - Hovorka’s
model

t1 t2 p1 t5 p2 t3 x20 x30 x40 x50

1

2

3

4

5

6

7

FIGURE 4: Reduced identifiability tableau - Grosman’s
model
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FIGURE 5: Reduced identifiability tableau - 5θ model (Str.
A)

solutions not allowing to find a unique set of parameters.

B. GENERAL MODEL
In an initial analysis, it was shown that the complete param-
eter set, including the initial conditions of the state

θ =
[
θ1, . . . , θ8, X(0)

]T
is not globally structurally identifiable (although local struc-
tural identifiability holds). Different combinations of pa-
rameters were assessed in terms of structural identifiability,
considering different bioavailability rates, equal poles in both
subsystems, and the self-regulation term, to find minimal
realizations being both globally identifiable and observable.
The tested variations of the general model are detailed in
Table 5, in which a reduction of parameters was made until
a structure satisfied to be GIO. Two of these variations are
further analyzed.

1) Structure A
This structure simplifies the general model as follows:
{θ7a, θ7b, θ8a, θ8b} = 1, {θ3a, θ3b} = θ3, and {θ5a, θ5b} =
θ5 =, θ6 = 0 i.e., all bioavailability parameters are set as
1, the time constants are equal for each insulin and oral sub-
system, and the self-regulation term is not considered. With
this modification, the 4 initial states are deemed identifiable
(glycemia value is known as it is the output signal) together
with the 5 resulting model parameters. The structure is simi-
lar to the one of Magdelaine’s model, but provides a solution
to the ambiguity problem generated by the parameters KSI

and Ku by grouping both into θ2 = KSIKu/Vi. This mini-
mal realization yield both subsystems with critically damped
dynamics.

Figure 5 shows the tableau for the general model with
structure A. It is observed that the matrix is full-rank of order
9; therefore, the model satisfies the condition of structural
identifiability.

1 2 3 4 5 6
X

b

1

2

3

4

5

6

7

FIGURE 6: Reduced identifiability tableau - 6θ model (Str.
B)

2) Structure B
This structure extends structure A with the self-regulation
term θ6. Besides, fasting conditions for the initial state are
considered. The initial condition states X2(0) and X3(0) are
set in equilibrium Xb associated to the basal infusion rate,
and X4(0) and X5(0) are set as zero due to the absence
of boluses. The above holds only after several hours with
no meal intake nor insulin bolus, i.e., in the steady-state.
With the above, the model with structure B becomes GI and
partially observable model.

Figure 6 shows the full-rank tableau for the generic model
with structure B. Although this structure has more parameters
in the model, structure A has a constraint-free initial state.

V. PRACTICAL IDENTIFIABILITY
Once the structural identifiability of the model is studied, the
next step is to perform a practical identifiability analysis to
determine whether it is possible to find a unique numerical
solution from noisy measurements, in this case, CGM data.
In terms of model individualization, experimental design
poses a significant challenge in diabetes technology since a
persistent exciting signal cannot be directly applied to a real
subject. Therefore, the model must be identified with input-
output data collected in outpatient conditions. The output of
the system is the data received by the CGM device corre-
sponding to the glycemia measurements every 5 minutes. The
first input corresponds to the delivered insulin doses. For this
input, both the basal insulin and the insulin boluses are taken
into account. Typically, the basal application is programmed
into the insulin pump, while the boluses are calculated by
the patient at mealtimes (keeping it as a record in the insulin
pump memory). The second input corresponds to the CHO
count made by the user at mealtime and reported either in the
insulin pump or the CGM application. The most significant
error source for the identification process comes from the last
two entries, as it depends entirely on the patient’s report.

Non-identifiable parameters can often be approximated to
fixed (population) values as long as their influence on the
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TABLE 4: Summary of literature models structure: BA–Bioavailability; EP–Equal poles; SR–Self-regulation; LI–Locally
identifiable; GI-Globally identifiable; GIO-Globally identifiable and observable; NU-Number of unknown parameters

Model BA6= 1 EP SR LI GI GIO NU Ref.

Del Re 7 3 7 3 3 3 4 [56]
Magddelaine 7 3 7 7 7 7 6 [10]

Hovorka 7 3 3 7 7 7 7 [11]
Grosman 7 3 3 3 7 7 7 [12]

TABLE 5: Summary of general model structure variations: BA–Bioavailability; EP–Equal poles; SR–Self-regulation;
LI–Locally identifiable; GI-Globally identifiable; GIO-Globally identifiable and observable; NU-Number of unknown param-
eters

Model BA6= 1 EP SR LI GI GIO NU

12θ (General) 3 7 3 3 7 7 12
11θ 3 7 7 3 7 7 11
10θ 3 3 3 3 7 7 10
9θ 3 3 7 3 7 7 9
8θ 7 7 3 3 7 7 8
7θ 7 7 7 3 7 7 7

6θ (Structure B) 7 3 3 3 3 7 6
5θ (Structure A) 7 3 7 3 3 3 5

measured variable is not significant. In this regard, modeling
strategies should target parameter identifiability for the most
influential parameters. As presented in [13], [88], parameters
can be ranked in terms of an importance factor, e.g., the
individual sensitivities of the measured variable to changes
in a given parameter set.

First, let us consider the matrix that includes the sensitivity
terms of the output with respect to the model parameters

S =
∂Y (t)

∂θ
=
[
Sθ1 ... Sθn

]
=


∂Y1

∂θ1
... ∂Y1

∂θn
...

. . .
...

∂Yk
∂θ1

... ∂Yk
∂θn

 (2)

where Sθ1 ... Sθn can be computed by expanding system (1)
with the sensitivity Sθi as a new state with initial conditions
equal to zero. The sensitivity matrix can be computed through
the Advanced Model Identification using Global Optimiza-
tion (AMIGO) software [88] along with the importance fac-
tor (3) which will be helpful to rank the parameters.

To consider a sensitivity analysis valid for the entire space,
nlhs different parameter sets within the possible range are
found using the Latin Hypercube Sampling (LHS) method
[89]. The importance factor for each parameter is given by

δmsqrθi
=

1

nlhs k

√√√√nlhs∑
l=1

ne∑
e=1

(
Sl,eθi

)2
(3)

where ne refers to the number of experiments. The higher
the factor for a particular parameter, the more relevant the
effect of the parameter over the output. Then, for non-
identifiable models, this method is commonly used to con-
sider only the most relevant parameters and set the pa-
rameters less sensitive to population values [13]. To guar-
antee uniqueness in the solution, linear independence be-

tween/among columns of the relative sensitivity Ŝ matrix
should be verified

Ŝ =
[
Sθ1

‖Sθ1‖
...

Sθn
‖Sθn‖

]
(4)

There are several methods to determine the collinearity de-
gree in a group of parameters. The collinearity index [90]
CD(θ) is used here to quantify that correlation

CD(θ) =
1√
λŜT Ŝ

, (5)

with λŜ the minimum eigenvalue of the sensitivity matrix
relative to ŜT Ŝ. This index indicates that a change in the
output Y caused by a variation of parameter θi can be
compensated in a linear approximation up to 1/CD% with
appropriate changes in the other parameters. In [90], a CD
boundary of 20 was proposed. This means that the change
in Y can be compensated by up to 1/20 = 5% of changes
in the other parameters. A high value of CD indicates that
the parameter set is weakly identifiable with the collected
data, while low values suggest linear independence of the
parameter set.

Collinearity tests in virtual and real subjects with T1D
were performed at different time intervals. Using the sen-
sitivity analysis in the collected data and for structures A
and B, the collinearity index was evaluated in periods of 3
hours from the start of the data up to 5 days. The obtained
results are shown in Figures 7-10. On average, the minimum
collinearity index was reached in around one and a half days.
This could be explained by the input pattern since insulin
and mealtimes do not vary too much between days. Thus,
longer periods usually have the same distribution, and the
collinearity index remains constant or increases as denoted
in figures.
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FIGURE 7: Collinearity index CD - Virtual patients, Str. A
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FIGURE 8: Collinearity index CD - Virtual patients, Str. B
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FIGURE 9: Collinearity index CD - Real patients, Str. A
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FIGURE 10: Collinearity index CD - Real patients, Str. B
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FIGURE 11: Collinearity index CD - Real patients, optimal
index

Due to a large amount of data in real subjects, it was nec-
essary to find the time interval that minimizes the collinear-
ity index and improves practical identifiability. A genetic
algorithm to craft identification data sets minimizing the
collinearity degree among parameters was implemented to
achieve this. For Structure B, the initial time was restricted
to periods between 3 am to 6 am, trying to guarantee that all
states are in steady-state.

Initial parameters are necessary to minimize the CD,
which were estimated considering an initial interval of 2
days. A lower collinearity index was then found for every
real patient by varying the interval using a genetic algorithm.
Figure 11 shows the collinearity index (CD) obtained for
each patient and for structures A and B, where 14 and 33
intervals satisfy the condition CD ≤ 20, respectively, in
comparison to the CD previously reported in figures 9 and
10, where only 5 and 7 intervals satisfied this condition. The
median of the collinearity index was 28.7 for structure A and
25.2 for structure B. This outcome may be due to the strong
correlation between inputs (a bolus accompanies meals in
most cases) and because of the almost invariant pattern of
basal levels between days.

VI. IDENTIFICATION AND VALIDATION
In this section, the two model structures A and B are iden-
tified with the suitable data sets defined in the practical
identifiability analysis. Then, the validation of each model
for the virtual and real subjects is presented. An overview of
the whole process for the identification process of a model
can be seen in Fig. 12.

The first step for identification is the discretization of the
models since the CGM measurements are obtained with a
sampling time of ts = 5 min. Here, a zero-order holder and
sampler is considered, yielding

x(k) = Adx(k − 1) +Bd

 ui(k − 1)
um(k − 1)
uf (k − 1)

 , (6)

y(k) = Cdx(k),

where y(k), ui(k), um(k), and x(k) represent the output,
insulin injection, CHO amount, and state at the k−th sample.
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FIGURE 12: Guidelines to perform the identification of a
model.

The fictitious input uf (k−1) is set to 1, andBd is the discrete
equivalent of the augmented matrix Bd = [B E]d. The input
um (derived from the meal announcement) is a variable
duration pulse constructed as follows: um = ūm during
n = b(gCHO/Ts)/ūmc steps, where gCHO [g] is the CHO
amount, and um = (gCHO/Ts − nūm) ≥ 0 in the next step.
The upper bound of um is empirically set to ūm = 2 [g/min].
However, it should be an average physiological parameter
that depends on the body mass index.

Afterwards, the identification problem is posed as an
optimization problem such that the error between the data
collected from the subject with T1D and the individualized
model is minimized. As it is usual, the mean square error
function (MSE) is chosen as cost function, which reads as

MSE = f(θ) =
1

m

m∑
k=0

(Y [k]− y[k, θ])2, (7)

where y(k, θ) represents the model output and Y (k) the
actual measurement of the system at time k. The performance
index is defined as the mean absolute error (MAE) to ex-
plain the model error in mg/dL units. This function range
is between 0 and ∞ mg/dl, indicating an ideal and poor fit,
respectively.

In this application, the system does not use persistent exci-
tation (neither insulin doses nor carbohydrate content can be

persistently varied in a real subject). Therefore, the identifica-
tion procedure should be performed using historical records
of CGM, meal, and insulin uploaded from the user devices.
In this regard, a gradient-based optimization technique is
suitable for the identification procedure. Thus, the iterative
Gauss-Newton algorithm is used here to individualize the
proposed model [91] as it is shown in algorithm 1.

Algorithm 1 Gauss-Newton

1: Define θ[0]{Initial parameters and states}
2: while max(dir) >= Toldir & k <= Limk do
3: α← 1{Initial step size}
4: dir← -Hf (θ)/Jf (θ){Max. slope}
5: i← 0
6: while f [i] >= f [i− 1] & fc <= Limfc do
7: θ[i+ 1]← θ[i]− α dir{Parameters update}
8: Calculate f(θ), Jf (θ) y Hf (θ)
9: fc ← fc + 1

10: α← α/2{Step size update}
11: end while
12: i← i+ 1
13: end while
14: return θ{Final guess of parameters} =0

The algorithm founds the parameters θ that minimize the
MSE in (7), and computes the step direction as Hf (θ)

Jf (θ)
, where

Jf (θ) and Hf (θ) are the Jacobian and Hessian of function f
with respect to θ, which are given by:

Jf (θ) =
∂f

∂θ
=

2

m

m∑
k=0

(Y [k]− y[k, θ])JY (θ), (8)

Hf (θ) =
∂Jf (θ)

∂θ
≈ 2

m

m∑
k=0

JY (θ)JTY (θ), (9)

JY (θ) = Cd
∂x

∂θ
= Cd


∂x1

∂θ1
... ∂x1

∂θn
...

. . .
...

∂x5

∂θ1
... ∂x5

∂θn

 , (10)

Finally, the parameters are computed as:

θ[i+ 1] = θ[i] + α
Hf (θ)

Jf (θ)
, (11)

in which the step α is initialized as 1, and the pa-
rameters are initialized with θ(0) = [ubISF, ISF,
80, ISF/CR, 50, 0.005] (θ6 only applies for Structure
B), where the constant values are population parameters
extracted from the literature. The initial state is taken during
the fasting period (no meal consumption) considering a fixed
insulin infusion equal to the basal value (i.e., x2(0) =
x3(0) = ub, x4(0) = x5(0) = 0). The error curve of
this method (descending gradient type) has several local
minimums. Therefore, convergence to the global minimum
is achieved when the initial value of the parameters vector θ
is closer to the global minimum than to another neighboring
local minimum. Matlab was used to perform the whole
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FIGURE 13: Parameter comparison between structures A
and B in virtual and real subjects

procedure. The calibration (identification) dataset is the one
defined by the collinearity index that minimizes the input
correlation metric.

Structures A and B were identified during fixed periods of
3 days in virtual subjects and variable periods in real subjects
(depending on the interval with the lowest collinearity index).
Afterwards, for both virtual and real subjects, the individ-
ualized model is validated by comparing the output of the
model with data compiled during the 24-hours following the
calibration period.

The data of 33 virtual subjects was obtained from the
UVA/Padova simulator. A simulation scenario was created
in which five different basal segments were applied each day.
For the identification period the input of meals was defined as
[(32, 5, 67, 20, 42), (52, 27, 67, 39, 51), (37, 11, 69, 17, 42)],
and for the validation period as [(45, 15, 85, 54)] grams of
CHO. An insulin bolus was delivered for each meal, whose
amount was suggested by the UVA/Padova simulator bolus
calculator [92]. On the other hand, data from 77 real adult
subjects with T1D were collected from 2017 to 2019 (Clinica
Integral de Diabetes, Medellin, Colombia). The hardware
configuration used for data collection was the Paradigm Veo
System, composed of CGM and an insulin pump. Four mod-
els of pumps were found: Minimed Paradigm 722, 723, 754,
and 640G, which have recently been updated with the current
model 670G. All the identification scripts and data can be
found in https://github.com/judhoyosgi96/DM1-script.

The identification results using the Gauss-Newton method
are reported in Table 6. It presents the parameters, ini-
tial states, the adjustment in the periods of identification
(MAEid) and validation (MAEval), and tools for FIT, where
the sub-index "real" indicates the population value calculated
by the UVA/Padova simulator (for virtual subjects) or the

one reported in the insulin pump (for real subjects), and the
metric denoted as REz indicates the relative error between
the real value and the identified value of variable z. The
outcomes are reported as mean ± standard deviation for
normally distributed data and as median (interquartile range)
otherwise.

It is observed that Structure B achieved a better fit to the
curve in virtual subjects than Structure A. However, with
Structure B, the results in terms of FIT tools are not improved
when comparing them to nominal values in UVA/Padova
simulator. On the other hand, the fit to the curve was not
improved for real subjects when using Structure B. We can
speculate that the reason is related to the more significant
variability of the real subjects than the virtual subjects.

Figure 13 shows the comparison of structures A and B,
with data of virtual and real subjects. Although all parameters
are close on every scenario, time constants θ4 and θ5 are
bigger on real than virtual patients in both structures. This
could be explained by the uncertainty of the (self-reported)
meal record.

Figures 14 and 15 show the model fit on the average virtual
subjects (child, adolescent, and adult) of the UVA/Padova
simulator when using structures A and B in the identification
and validation periods. An improvement in MAE can be seen
when using structure B (MAEid=9.9 mg/dl,MAEval =12.3
mg/dl) with respect to structure A (MAEid=16.8 mg/dl,
MAEval =23.9 mg/dl).

In addition, Figure 16 shows the model fit after identifying
structure A with data of real subjects. The identification
period was defined according to the collinearity index (an av-
erage interval duration of 2 days was obtained). For structure
A, 6 subjects are depicted with satisfactory results, represent-
ing the glycemic dynamics within both the calibration and
validation periods. Complete results are shown on the table 6
for structures A and B. Poor performance can sometimes be
explained by inaccurate data, i.e., data sets with missing CHO
or bolus entries, intra-patient variability, and non-accounted
non-linear behavior.

VII. CONCLUSION
Model-based APS use a prediction model of the glucose-
insulin system to plan the insulin policy timely. Linear
control-control-oriented models have the potential of reach-
ing acceptable prediction accuracy while keeping the com-
putational load stable. To guarantee the uniqueness of the
solution after the identification process, it is necessary to
carry out an analysis of structural and practical identifiability.
In this work, four linear models of the literature were studied,
and a general model was proposed that summarizes the
dynamics described in all of them. Using different parameter
combinations, two minimal globally structurally identifiable
realizations were proposed, which were identified with sim-
ulation and real data. Satisfactory results were obtained in
both data sets, fitting the CGM measurements and estimating
the tools for FIT. Although Structure A better represents
glycemic behavior in subjects with T1D, Structure B can be
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TABLE 6: Summary of identified parameters, initial states, and FIT tools using structures A and B

Structure A Structure B

Symbol
Data Virtual Real Virtual Real

θ1[mg/dl/min] 0.6449± 0.3171 0.5231± 0.3611 1.6227(1.6003) 0.8316(1.2412)
θ2[mg/dl/U] 57.4±34.8 44.1±23.8 87.3(115.5) 46.6(30.1)
θ3[min] 98.7±38.9 76.6(84.3) 101.8±48.9 73.3(53.8)
θ4[mg/dl/gCHO] 2.6±0.8 5.4(4.5) 5.2(4.1) 5.9(6.2)
θ5[min] 17.6±3.4 74.0(68.4) 37.0(12.1) 75.6±57.1
θ6[min−1] N.A. N.A. 0.0060(0.0076) 0.0014(0.0067)

X2(0)[U] | Xb[U] 0.019(0.029) 0.465(1.745) 0.013±0.008 0.009(0.017)
X3(0)[U] 0.023±0.014 0.160(0.454) N.A. N.A.
X4(0)[gCHO] 0.295±0.360 4.071(13.533) N.A. N.A.
X5(0)[gCHO] 0.487(0.912) 1.737(4.716) N.A. N.A.

MAEid [mg/dl] 16.8 ± 4.2 21.6 ± 7.0 9.9 ± 1.8 21.5 ± 7.4
MAEval [mg/dl] 23.9 ± 9.7 39.2 (31.8) 12.3 ± 3.2 36.6 (32.9)

ubreal [U/h] 0.841 ± 0.414 0.651 ± 0.312 0.841 ± 0.414 0.648 ± 0.308
ub[U/h] 0.842 ± 0.419 0.747 ± 0.395 0.921 ± 0.456 0.944 ± 0.565
REub [%] 5.4 ± 4.3 25.6 (47.4) 10.1 ± 8.3 39.4 (67.6)
CIRreal 20.0 ± 7.2 8.9 ± 4.8 20.0 ± 7.2 7.6 (5.6)
CIR[gCHO /U] 20.6 ± 7.9 7.4 (5.4) 16.7 ± 6.1 8.5 ± 4.9
RECIR[%] 9.4 ± 5.5 17.3 (27.3) 15.6 ± 12.8 29.8 ± 21.9
CFreal[mg/dl/U] 72.4 ± 37.7 57.3 ± 16.9 72.4 ± 37.7 57.3 ± 16.7
CF [mg/dl/U] 57.4 ± 34.8 44.1 ± 23.8 87.3 (115.5) 46.6 (30.1)
RECF [%] 31.4 ± 17.8 37.6 ± 24.9 35.0 (95.4) 28.8 (30.6)

Outcome metrics are reported as Mean ± SD for normally distributed data and as median (IQR) otherwise.
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FIGURE 14: Model fit of virtual patients - 5θ model (Structure A)
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FIGURE 15: Model fit of virtual patients - 6θ model (Structure B)
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FIGURE 16: Model fit of real patients - 5θ model (Structure A)

useful in some cases, as evidenced in virtual patients. Ad-
ditionally, these structures allow patients’ individualization
and, through a practical identifiability analysis, the definition
of reliable data chunks to avoid parameter correlation.
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