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Abstract

In this paper, the structure of semicompeting risks data, de�ned by Fine,
Jiang & Chappell (2001), is studied. Two events are of interest: a non-
terminal and a terminal event, the last one, can censor the non-terminal
event, but not vice versa. Due to the possible dependence between the times
until the occurrence of such events, two approaches are evaluated: modelling
the bivariate survival function through Archimedean copulas and a shared
frailty model. A simulation is conducted to examine its performance and
both approaches are applied to a real data set of patients with chronic kid-
ney disease (CKD).

Key words: Archimedean Copula; Frailty model; Semicompeting risks; Sur-
vival.

Resumen

En este trabajo se estudia la estructura de datos con riesgos semicompeti-
tivos de�nida por Fine et al. (2001). En esta estructura existen dos eventos
de interés; uno intermedio y otro terminal, este último puede censurar el
evento intermedio, pero no viceversa. Dada la posible dependencia, entre
los tiempos hasta la ocurrencia de tales eventos, dos tipos de enfoques son
evaluados: uno, modelando la función de supervivencia bivariada a través
de cópulas Arquimedianas y el outro por medio de un modelo con fragilidad
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compartida. El desempeño se observa através de simulación. Ambos enfo-
ques son aplicados a un conjunto de datos reales de pacientes con insu�ciencia
renal crónica, que pueden o no presentar una recaída de la enfermedad luego
de ser tratados con diálisis.

Palabras clave: Cópulas arquimedianas; Modelo de fragilidad; Superviven-
cia; Riesgos semicompetitivos.

1. Introduction

Currently, chronic kidney disease (CKD) is considered a worldwide problem
and a great increase of deaths caused by CKD has been observed from 1990 to
2010 (Martín-Cleary & Ortiz 2014). In Colombia, its prevalence has increased
(Gómez 2006) and, according to Fondo Colombiano de Enfermedades de Alto
Costo (Cuenta del Alto Costo 2014),975.479 people had CKD in 2013. In Decem-
ber 1993, the social security system was reformulated (the law 100 was enacted)
and this change increased considerably the coverage of patients with renal dise-
ase. CKD is a high cost disease and the excessive cost is a major concern for
healthcare systems. Therefore, there is great interest in studying CKD and its
progression, mortality and response to treatments, such as hemodialysis and pe-
ritoneal dialysis. In this work, we are concerned with the analysis of a dataset
with end-stage renal disease (ESRD), stages IV and V, of CKD patients, followed
from 2009 to 2011, from �ve cities in Colombia: Manizales, Monteria, Rionegro,
Sincelejo and Tunja. The data contains information about 1253 patients who had
started dialysis treatment. The patients were periodically examined and tests were
performed to obtain the levels of calcium, inorganic phosphorus, serum albumin,
serum creatinine, among other blood tests. There is a major interest in studying
survival times of those patients, but it is also of interest to study the disease's
progression. Researchers involved in this study were particularly interested in stu-
dying the time until a progression of the disease occurs. This progression can be
considered as a worsening in the patient's health, determined by the levels of some
substances in the blood and by the clinical evaluation of the patient. Speci�cally,
in this study progression was de�ned by high levels of inorganic phosphorus (level
over 5,6 mg/dl). Therefore, in this particular study, there are two main events of
interest: time until progression and time until death.

Common survival analysis techniques are suitable when the interest is to study
only the time until the occurrence of an event. When observations are subject to
more than one type of event (e.g, di�erent causes of death) and the occurrence of
an event prevents the occurrence of the other, there is a competing risks structure.
Our CKD data, nevertheless, cannot be viewed as competing risks data since
some patients may experience the progression and also death. In our example, the
main interest is to study two events, one of which (terminal event) prevents the
occurrence of the other (non-terminal event), but not vice versa. This structure is
known as Semicompeting Risks, de�ned by Fine et al. (2001). In cancer studies,
typically the non-terminal event is the relapse of cancer and sometimes the non-
terminal event is simply called progression.
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Recently, increased attention has been given to semicompeting risks data, and
there are two main di�culties in addition to the existence of censored data: (i) the
hypothesis that we have a pair of random variables with the restriction that one of
them is always smaller than the other one (progression necessarily occurs before
death) or one of them is not observed and (ii) the time until the non-terminal event
and time until the terminal event cannot be considered as independent random
variables. This possible dependence must be taken into account into statistical
analysis. According to Hsieh, Wang & Ding (2008), if the relationship between
the two events is completely unspeci�ed, the marginal distribution of the time to
a non-terminal event is not identi�able due to possible dependent censoring. In
this context, while the univariate Kaplan-Meier (K-M) estimator can be used to
estimate the survival function of the terminal event, it cannot be used for the non-
terminal event and even a descriptive analysis for semicompeting risks data must
be done using appropriate methodologies. It can be found in the literature di�erent
generalizations to the Kaplan-Meier estimator for bivariate situations (see, for
example, Campbell & Foldes 1980, Campbell 1981, Hanley & Parnes 1983, Tsai,
Leurgans & Crowley 1986, Dabrowska 1988, Prentice & Cai 1992). Although we
are interested in a bivariate survival function, semicompeting risks structure is
di�erent and it is not straightforward to adapt those estimators for our context.
Therefore, the approach of Lakhal & Abdous (2008) using Archimedean copulas
is a natural choice since it was proposed for semicompeting risks data. It also
allows one to study explicitly the dependence between the time until the terminal
and non-terminal events. Moreover, Archimedean copulas are quite referenced in
the literature for bivariate survival models and they are associated with frailty
multiplicative models (Romeo 2005).

In this work, we are focused on the statistical analysis of CKD data set using
appropriate methods for semicompeting risks data. In order to carry a complete
data analysis, we combined di�erent new methodologies already available in the
literature. Initially, we are concerned with methodologies for an appropriate des-
criptive analysis and we consider the estimation of the bivariate survival function
and the non-terminal event survival function through Archimedean copulas, as
suggested by Lakhal & Abdous (2008). Estimators for the survival functions are
obtained for some Archimedean copulas (see Nelsen 2006, p.116) and we discuss
those estimators in Section 2. In the sequence, we are interested in a regression
model for both the time until progression and time until death. We focus on
a three-state process, known as Illness-Death process, initially studied by Fix &
Neyman (1951) and proposed by Xu, Kalb�eisch & Tai (2010) for semicompeting
risks data. In this case, the inclusion of covariates and a possible dependence be-
tween the two times (terminal and non-terminal events) is taken into account by
a shared frailty and the model is presented in Section 3. We also present a short
simulation study comparing the performance of this model and a naive regression
model where the dependence is not included. Finally, in Section 4 we present the
results of the analysis of CKD data and in Section 5 we discuss the methods and
results.
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2. Bivariate Survival Function Estimation Through

Archimedean Copulas

In this section, we describe the methodology used for a proper descriptive
analysis of semicompeting risks data. We brie�y introduce the concept of copulas
and discuss the four copulas considered in this work. We then discuss estimation
procedures for plotting graphics of the marginal survival functions of both events
of interest.

Let X be the time to the non-terminal event and let Y be the time to the
terminal event. For semicompeting risks data we have the restriction X < Y ,
thus, the bivariate survival function is de�ned in the upper wedge. Furthermore,
the assumption of independence of X and Y is not reasonable and, therefore,
we cannot use K-M estimator for the survival function of the non-terminal event
X. It is then necessary to incorporate the dependence between X and Y in the
estimator. In the bivariate case, let (X,Y ) be continuous random variables with
marginal survival functions (SX(x), SY (y)). The bivariate survival function based
on a copula Cα(·) for some α ∈ A is given by

SXY (x, y) = P (X > x, Y > y) = Cα(SX(x), SY (y)), 0 ≤ x ≤ y. (1)

The copula is a natural function and an e�cient way to construct multivari-
ate distributions for random variables, since it couples the marginal distribution
and captures their dependence. Archimedean copulas are an important family of
copulas associated with bivariate survival models (Romeo 2005) and are de�ned
by

Cα(u, v) = φ−1
α {φα(u) + φα(v)} 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, (2)

where φα(·), known as the generator of Cα(·, ·), is a continuous strictly decreasing
convex function from [0, 1] to [0,∞) such that φα(1) = 0 and φ−1

α (·) denotes the
inverse of φα(·) (Nelsen 2006). The parameter α is associated with the intensity
of the dependence between the variables. Usually, this dependence is quanti�ed
by Kendall's tau measure of association, discussed in more details in Section 2.2.

Although the approach of Lakhal & Abdous (2008) for estimating survival and
association in the semicompeting risks works for any Archimedean copula, we have
implemented the methodology for the most referenced families. The Clayton fa-
mily (which we call Family A) is associated to the multiplicative frailty gamma
model and the dependence is (strongly) concentrated in the extreme lower left.
The Frank family (family C) admits both positive and negative dependence and
the Gumbel family (family D) has positive dependence strongly concentrated in
the extremes (tail dependence). We have also implemented the family B corre-
sponding to the family 4.2.2 de�ned on page 116 of Nelsen (2006) due to the simple
expression of the copula. Table 1 shows the function Cα(u, v) that de�nes each
family and the corresponding generating function.
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Table 1: Archimedean copulas families considered.

Family Copula, Cα(u, v)
Generating

function φα(k)

A [max(u−α + v−α − 1, 0)]−1/α, α ∈ [−1,∞) \ {0}
1

α
(k−α + 1)

B 1− [(1− u)α + (1− v)α]1/α, α ∈ [1,∞) (1− k)α

C −
1

α
ln

(
1 +

(e−αu − 1)(e−αv − 1)

e−α − 1

)
, α ∈ (−∞,∞) \ {0} − ln

(
e−αk − 1

e−α − 1

)
D exp{−[(− lnu)α + (− ln v)α]1/α}, α ∈ [1,∞) (− ln k)α

2.1. Censoring and Notation

We assume that our data is subject to right-censoring and therefore we may
not observe X and Y for all subjects. The observable quantities are described
as follow. Let Z = min(X,Y ) and δx = I{X<Y }, where I{X<Y } is given by
I{X<Y } = 1 if X < Y and I{X<Y } = 0 otherwise. Let C be a right-censoring
variable independent of (X,Y ) and de�ne the random variables R = min(Y,C),
S = min(Z,C), δy = I{Y <C}, δz = I{Z<C} and δxz = δxδz. Thus, the data set
consists of n independent replications of Di = {(Ri, Si, δyi , δzi , δxzi), i = 1, · · · , n}
of observable variables (R,S, δy, δz, δxz).

It is important to notice that, due to the right-censoring, for semicompeting
risks four situations are possible:

Case 1. Subject was observed to have progression at xi and death at yi, then,
Di = (Ri = yi, Si = xi, δyi = 1, δzi = 1, δxzi = 1);

Case 2. Subject died at time yi without progression, Di = (Ri = yi, Si =
yi, δyi = 1, δzi = 1, δxzi = 0);

Case 3. Subject was observed to have progression at xi and right censoring at
yi, so Di = (Ri = ci, Si = xi, δyi = 0, δzi = 1, δxzi = 1);

Case 4. Both events progression and death were not observed, and hence,
Di = (Ri = ci, Si = ci, δyi = 0, δzi = 0, δxzi = 0).

2.2. Measures of Association

As mentioned before, the parameter α in (1) and (2) is associated with the
intensity of the dependence and its interpretation depends on the speci�c copula
considered. A common association measure used in this context is the Kendall's
tau coe�cient, de�ned by

τ = E{sgn((X1 −X2)(Y1 −Y2))},

where sgn(x) =





−1 if x < 0

0 if x = 0

1 if x > 0

,
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(X1, Y1) and (X2, Y2) are two independent replications of (X,Y ) of any random
variables. For Archimedean copulas, Kendall's tau coe�cient can be easily com-
puted, see Nelsen (2006) for more details.

In semicompeting risks, when right censoring is observed, (Xi, Yi) and (Xj , Yj)

can be compared only when the event Aij = X̃ij ≤ Ỹij ≤ C̃ij occurs, with

X̃ij = min(Xi, Xj), Ỹij = min(Yi, Yj) and C̃ij = min(Ci, Cj). This leads to
some di�culties when working with Kendall's coe�cient and it is then useful to
de�ne the conditional Kendall's tau (Oakes 1989):

τα = E{sgn[(Xi −Xj)(Yi − Yj)]|Aij}.

Another important association measure is a local counterpart of the Kendall's
tau, which is a local measure of dependence, de�ned by Clayton (1978) as the
cross-ratio function, given by

θ∗(x, y) =
P{(Xi −Xj)(Yi − Yj) > 0|X̃ij = x; Ỹij = y}
P{(Xi −Xj)(Yi − Yj) < 0|X̃ij = x; Ỹij = y}

=
SXY (x, y)D1D2S(x, y)

D1SXY (x, y)D2SXY (x, y)
,

where D1 = −∂/(∂x) and D2 = −∂/(∂y). Oakes (1989) showed that θ∗α(x, y) =
θ(SXY (x, y)), then for the Archimedean copulas we have the result

θ∗α(x, y) = −kφ
′′

α(k)

φ′α(k)
= θα(k),

where k = SXY (x, y).

Table 2 shows the expressions for Kendall's tau coe�cient and the correspon-
ding cross-ratio function for each of the four copulas considered in this work.

Table 2: Association measures of four Archimedean copulas families.

Family
Generating

function φα(k)
Kendall's tau τ cross-ration

function θ∗α(k)

A
1

α
(k−α + 1) α

α+2
α+ 1

B (1− k)α τ = α−2
α

k(α−1)
1−k

C − ln

(
e−αk − 1

e−α − 1

)
1− 4

α2

∫ α
0

(
t

e−t−1

)
dt− 4

α
αk

1−e−αk

D (− ln k)α − 4
α

(
1
4

)
+ 1 = α−1

α
1− α−1

log k

The cross-ration function and the conditional tau coe�cient are related and it
can be shown (Patiño 2012) that

τα = E

{
θα{SXY (X̃ij , Ỹij)} − 1

θα{SXY (X̃ij , Ỹij)}+ 1

∣∣∣∣Aij
}
. (3)

In the next section, expression (3) will be used as motivation for an estimating
equation for α.
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2.3. Estimation

We are interested in estimating the marginal survival functions SX(x) and
SY (y) and also the bivariate survival SXY (x, y) based on our available data. Some
conditional functions in which the copula parameter α is always involved may also
be of interest and will be discussed later. To construct (1), we need the non-
terminal and terminal survival function SX(x) and SY (y), respectively, as well
as the parameter α of the assumed copula. As mentioned before, the traditional
K-M method (Kaplan & Meier 1958) can be used to estimate SY (y). However, for
the non-terminal survival function SX(x) it is not appropriate due to the possi-
ble dependence between X and Y . In this context, various estimators have been
proposed: non parametric estimator by Fine et al. (2001), Pseudo Self-Consistent
estimator by Jiang, Fine, Kosorok & Chappell (2005) and the copula-graphic es-
timator by Zheng & Klein (1982), which was adapted by Rivest & Wells (2001)
for dependent censoring and by Lakhal & Abdous (2008) for semicompeting risks
data.

We describe here the method proposed by Lakhal & Abdous (2008), know it
as copula-graphic estimator for semicompeting risks. The authors �rst consider
the estimation of the parameter α. Motivated by expression (3), it is possible to
show that

E

{
θα{SXY (X̃ij , Ỹij)}

θα{SXY (X̃ij , Ỹij)}+ 1

∣∣∣∣Aij
}

= E
[
I{P{(Xi−Xj)(Yi−Yj)>0}|Aij

]
.

This result motivates the following estimating equation:

1(
n
2

) ∑
i<j

w(S̃ij , R̃ij)1{Aij} ×
{
I{(Xi−Xj)(Yi−Yj)>0} −

θα{SXY (X̃ij , Ỹij)}
θα{SXY (X̃ij , Ỹij)}+ 1

}
= 0, (4)

where w(·, ·) is a random weight function associated to the pair (i, j). Fine et al.
(2001) suggest

w−1
a,b(u, v) =

1

n

n∑

i=1

1{Si≥min(u,a),Ri≥min(b,v)},

for a > 0 and b > 0 constants. Note that equation (4) depends on the bivariate
survival function, which it is what we want to estimate in (1). Nevertheless, a non
parametric estimator may be used as a �rst approximation and Lin & Ying (1993)
suggested the following

S̃XY (x, y) =

∑n
i=1 I{Si>x,Ri>y}

ĜC(y)
, 0 ≤ x ≤ y,

where ĜC(·) is the K-M estimator of censoring survival function C.

For each copula considered in this work, a di�erent estimating equation is
obtained and numerical procedures may be needed. For the Clayton copula, a
solution for the equation may be obtained analytically. The estimation equations
or solution for the four copulas considered are shown in Table 3.
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Table 3: The estimation equations four Archimedean copulas families.

Family Estimation equation

A α̂ =

∑
i<j w(S̃ij ,R̃ij)Dij(2∆ij−1)∑
i<j w(S̃ij ,R̃ij)Dij(1−∆ij)

B 1(
n
2

) ∑
i<j

w(S̃ij , R̃ij)Dij ×
{

∆ij −
S̃XY (X̃ij ,Ỹij)(α−1)

S̃XY (X̃ij ,Ỹij)(α−2)+1

}
= 0

C 1(
n
2

) ∑
i<j

w(S̃ij , R̃ij)Dij ×
{

∆ij −
αS̃XY (X̃ij ,Ỹij)

αS̃(X̃ij ,Ỹij)+1−exp(−αS̃XY (X̃ij ,Ỹij))

}
= 0

D 1(
n
2

) ∑
i<j

w(S̃ij , R̃ij)Dij ×
{

∆ij −
ln(S̃XY (X̃ij ,Ỹij))−(α−1)

2 ln(S̃XY (X̃ij ,Ỹij))−(α−1)

}
= 0

After estimating α, we use the copula-graphic estimator adapted by Lakhal
& Abdous (2008) for the survival function associated to the non-terminal event.
The idea is to construct an estimator for SX(t) with similar properties to the K-
M estimator, i.e., that jumps when an non-terminal event is observed. In order
to do so, we need to consider Z = min(X,Y ) and it is important to notice that
SZ(t) = P (Z > t) = P (X > t, Y > t) = φ−1

α {φα(SX(t)) + φα(SY (t))}. If t0 is
an instant when a non-terminal event (X) was observed, then it is also an instant
that Z was observed. Therefore, the Kaplan-Meier estimator of SZ(t), which we

denote by ŜZ(t), should jump at t0 and

φα̂{ŜZ(t0)} = φα̂{ŜCGX (t0)}+ φα̂{ŜY (t0)}

φα̂{ŜZ(t0)} − φα̂{ŜZ(t−0 )} = φα̂{ŜCGX (t0)} − φα̂{ŜCGX (t−0 )}+ φα̂{ŜY (t0)} − φâ{ŜY (t−0 )},

where ŜCGX (t0) is the copula-graphic estimator. Assuming continuous X and Y ,

the two events cannot occur at the same time and φα̂{ŜZ(t0)} − φα̂{ŜZ(t−0 )} =

φα̂{ŜCGX (t0)} − φα̂{ŜCGX (t−0 )}. For an arbitrary t, summing this expression for all
t0 < t, we have

∑

Si≤t;δxzi=1

φα̂{ŜZ(Si)} − φα̂{ŜZ(S−i )} = φα̂{ŜCGX (t)}

and the copula-graphic estimator is given by

ŜCGX (t) = φ−1
â


 ∑

Si≤t;δxzi=1

φâ{ŜZ(Si)} − φâ{ŜZ(S−i )}


 . (5)

Finally, we can �nd the semiparametric estimator of the bivariate survival
function (1) with the marginals (5) for SX(x) and K-M Estimator for SY (y).
Large sample properties of the resulting estimator have been established (weak
convergence to a a Gaussian process) using martigale representation (Rivest &
Wells 2001).

Furthermore, from de the bivariate survival function, some other useful quan-
tities can be obtained (Lakhal & Abdous 2008), such as the probability that a
patient survives at y given that he has not progression at time x, given by

P̂ (Y > y|X > x;Y > x) =
Ŝ(x, y)

Ŝ(x, x)
,
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and the survival probability at y given that the patient has a progression at time
x and is alive at time t > x:

P̂ (Y > y|X = x;Y > t) =
φ′α(Cα{ŜX(x), ŜY (t)})
φ′α(Cα{ŜX(x), ŜY (y)})

.

These estimators can be easily obtained for the four families in Table 1; for
more details see Patiño (2012).

Regarding computational implementation, only the estimation of the depen-
dence parameter is computationally intensive. As already mentioned, for the Clay-
ton copula there is no iterative method because an analytical solution is available;
for the other copulas, there is a sum over

(
n
2

)
terms in the equations and this may

be the computational lengthiest step in estimation for large n, but this does not
represent a real problem in applications.

3. Illness-Death Model

Generally in applied survival analysis, it is of interest to determinate the e�ect
of covariates on the risks occurrence of the event of interest. For this purpose we
use the Illness-Death model with shared frailty, proposed by Xu et al. (2010).

In this model, the semicompeting risks data can be described by a three-state
process, the illness and death process, which is a process widely discussed in the
literature (see, Fix & Neyman 1951, Fiocco, Putter & van Houwelingen 2008).
The state occupied by the individual at time t = 0 is called on study (state 0)
and it is assumed the patient remains in this state until the intermediate event
or the death occurs. When the intermediate event (not terminal) occurs, the
individual condition is called relapse or progression (state 1) and the death is
the �nal condition or absorbing state (state 2). Notice that it is not possible a
transition from the intermediate state to the initial state. The main interest is
to model the transition intensities functions, i.e., the hazard rates associated with
the transitions between states (See Figure 1).
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Figure 1: Illness-Death model for Semicompeting risks data.

The model proposed by Xu et al. (2010) is based on the hazard ratios functions
of transitions between the states 0 (under study), 1 (relapse/progression) and 2
(death) de�ned by
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(death) de�ned by
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λ1(x) = lim
∆→0

P (x ≤ X < x+ ∆|X ≥ x, Y ≥ x)

∆
,

λ2(y) = lim
∆→0

P (y ≤ Y < y + ∆|X ≥ y, Y ≥ y)

∆
and (6)

λ12(y|x) = lim
∆→0

P (y ≤ Y < y + ∆|X = x, Y ≥ y)

∆
,

with 0 < x < y.
Notice that the hazards rates λ1(x) and λ2(y) are not equal to the usual hazard

rates de�ned in survival analysis; they correspond to the speci�c cause risk function
used in the context of competing risks (Klein & Moeschberger 2003).

As mentioning before, in semicompeting risks, it is not appropriate to assume
independence between the event X and Y . Therefore, in order to introduce a
possible dependence of the transition times between the states progression and
death, we consider the use of a shared frailty model, denoting the frailty by a
random variable γ. The authors propose to model the conditional transitions
hazard rates given γ and include this random variable multiplicatively. Since
each transition hazard rate must be non-negative, we must have γ > 0 and it
is convenient to assume γ ∼ Γ(1/θ; 1/θ) such that E(γ) = 1 and the variance
is θ (which is unknown and must be estimated). The gamma distribution for
the random e�ects is convenient for semi parametric proportional hazards models
mainly due to mathematical convenience (for details see Wienke 2011) and it is,
therefore, a natural choice for a �rst approach. However, models with di�erent
frailty distributions should be considered in future research.

Thus, the conditional hazard functions de�ned above (6) are given by

λ1(x|γ) = γλ01(x), x > 0,

λ2(y|γ) = γλ02(y), y > 0,

λ12(y|γ, x) = γλ03(y), 0 < x < y.

However, in a general model, covariates (z) are incorporated similar to the Cox
proportional hazards model, so that

λ1(x|γ,z) =γλ01(x) exp{βt1z}, x > 0,

λ2(x|γ,z) =γλ02(y) exp{βt2z}, y > 0, (7)

λ12(y|γ, x, z) =γλ03(y) exp{βt3z}, 0 < x < y.

We are mainly interested in estimating the coe�cients β1, β2 and β3, which
contains information on the e�ects of covariates on the intensity functions condi-
tional on frailty. Xu et al. (2010) do not make any assumption for the baseline
functions λ01(x), λ02(y) and λ03(y) and non-parametric estimators are considered.

3.1. Estimation

Maximum likelihood can be used to obtain the estimators of the model para-
meters in (7). From this model, notice that the probability density function (and
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survival function) depends on the baseline transition intensity functions λ01(k),
λ02(k) and λ03(k), which are unknown and must be estimated. Following the idea
of several non-parametric estimators of cumulative hazard functions (see Breslow
(1972), Breslow (1975)), we can approximate the cumulative hazard function by a
function that jumps when a failure or event is observed. Assuming that we observe
m intermediate events, estimation of λ01(x) reduces to the problem of estimation
m parameters. Denoting by tr1, tr2, · · · , trm the instants in which a non-terminal
event was observed, td1, td2, · · · , tdf the times when a terminal event without pro-
gression was observed and trd1, trd2, · · · , trdg the times in which a terminal event
occurred after the progression, we can write

Λ01(k) =

m∑
j=1

λ01jI{trj<k}, Λ02(k) =

f∑
j=1

λ02jI{tdj<k} and Λ03(k) =

g∑
j=1

λ03jI{trdj<k}.

Let λ01 = (λ011, · · · , λ01m)>, λ02 = (λ021, · · · , λ02f )> and λ03 = (λ031, · · · , λ03g)
>,

where λ01j = dΛ01(trj), j = 1 · · · ,m, λ02j = dΛ02(tdj), j = 1 · · · , f and λ03j =
dΛ03(tdrj), j = 1 · · · , g.

With this notation, the vector of parameters is

η = (θ,β1,β2,β3,λ01,λ02,λ03) = (θ,β1,β2,β3, dΛ01, dΛ02, dΛ03),

For the estimation of η, it is necessary to obtain the joint survival function and the
corresponding density probability function of (X,Y ) to determine the contribution
of an individual in each case on the likelihood L(η). In semicompeting risks
structure, it is not straightforward to compute the bivariate probability density
function of (X,Y ) from the model speci�cation (7) because we have the restriction
that X < Y and X may not be observed.

In order to compute the bivariate density function, we assume conditional
independence of X and Y given the frailty. Due to relation beetwen the hazard,
density and survival functions h(·) = f(·)/s(·) from (7) we can write

fX|Γ(x|γ,z) = γλ01(x) exp{β>1 z − γΛ01(x) exp{β>1 z}}

and

fY |X,Γ(y|x, γ, z) = λ∗(y|x, γ, z)S∗(y|x, γ, z),

where

λ∗(y|x, γ, z) =

{
γλ03(y) exp{β>3 z}, x ≤ y,
γλ02(y) exp{β>2 z}, otherwise (non-terminal event not observed)

and

S∗(y|x, γ, z) ={
exp

{
−γ(Λ02(x) exp{β>2 z}+ Λ03(y) exp{β>3 z} − Λ03(x) exp{β>3 z})

}
, x ≤ y,

exp
{
−γΛ02(y) exp{β>2 z}

}
, otherwise.
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Using the fact that fX,Y (x, y|z) =
∫∞

0
fY |X,Γ(y|x, γ, z)fX|Γ(x|γ,z)fΓ(γ)dγ, we

can show that

fX,Y (x, y|z) =
(1 + θ)λ01(x)eβ

>
1 zλ03(y)eβ

>
3 z

(1 + θΛ01(x)eβ
>
1 z + θΛ02(x)eβ

>
2 z + θ(Λ03(y)− Λ03(x))eβ

>
3 z)−(1/θ)−2, x ≤ y,

(1 + θ)λ01(x)eβ
>
1 zλ02(y)eβ

>
2 z[1 + θΛ01(x)eβ

>
1 z + θΛ02(y)eβ

>
2 z]−(1/θ)−2, otherwise.

(8)

In expression (8), notice that the situation in which the non-terminal event is
not observed depends on x, which is not appropriate. Xu et al. (2010) assume that
this situation correspond to X =∞ and compute

f∞(y|z) =∫ ∞
y

(1 + θ)λ01(x)eβ
>
1 zλ02(y)eβ

>
2 z[1 + θΛ01(x)eβ

>
1 z + θΛ02(y)eβ

>
2 z]−(1/θ)−2dx

= λ02(y)eβ
>
2 z[1 + θΛ01(y)eβ

>
1 z + θΛ02(y)eβ

>
2 z]−(1/θ)−1. (9)

Expressions (8) for x < y and (9) are the probability densities functions needed for
the likelihood construction. Assuming that our data is subject to right censoring,
we must compute the survival distributions for censored observations. As discussed
before, due to censoring, we have four di�erent possibilities and the contribution
for the likelihood is di�erent for observations in each case: for observations in
case 1, the contribution to the likelihood is the density fXY (x, y), x < y; in case
2, the contribution is given by expression (9), i.e., f∞(y|z); for case 3, we must
compute SY |X=x(y)fX(x); and, �nally, for case 4, we need the survival function
SXY (x, y) (with x = y). Table 4 presents the expressions of the contribution for
the likelihood of each case.

Table 4: Contribution to the likelihood construction for each possible situation for right
censored data.

Contribution to the likelihood function

Case 1 (1 + θ)λ01(x)eβ
>
1 zλ03(y)eβ

>
3 z×

[1 + θΛ01(x)eβ
>
1 z + θΛ02(x)eβ

>
2 z + θ(Λ03(y)− Λ03(x))eβ

>
3 z ]−

1
θ
−2;

Case 2 λ02(y)eβ
>
2 z [1 + θΛ01(y)eβ

>
1 z + θΛ02(y)eβ

>
2 z ]−

1
θ
−1;

Case 3 λ01(x)eβ
T
1 z×

[1 + θΛ01(x)eβ
>
1 z + θΛ02(x)eβ

>
2 z + θ(Λ03(c)− Λ03(x))eβ

>
3 z ]−

1
θ
−1;

Case 4 [1 + θΛ01(c)eβ
>
1 z + θΛ02(c)eβ

>
2 z ]−

1
θ

Revista Colombiana de Estadística 42 (2019) 35�59



Modeling Data with Semicompeting Risks 47

Thus, with the observable variables Di = {(Ri, Si, δyi , δzi , δxzi), i = 1, · · · , n}
described in 2.1 the likelihood function is given by

L(η) =

n∏

i=1

λ01(Ri)
δxziλ02(Si)

δyi(1−δxzi)λ03(Si)
δxziδyi

× exp{δxziβ>1 zi + (δyi(1− δxzi)β>2 zi + δxziδyiβ
>
3 zi} × (1 + θ)δxziδyi

× {1 + θ[Λ01(Si)e
β>1 z + Λ02(Si)e

β>2 z (10)

+ (Λ03(Ri)− Λ03(Si))e
β>3 z]}− 1

θ−δxzi−δyi .

Observe that in cases 2 and 4 the term Λ03(Ri) − Λ03(Si) in (10) vanishes,
since Ri = Si. For more details, see Patiño (2012).

Finally, the estimators are solution of score equation U(η) = ∂ log(L(η))
∂η = 0.

The log likelihood function and the components of score vector are presented in
the Appendix A. Xu et al. (2010) specify some conditions to establish asymptotic
properties of the estimators. They discuss identi�ability of the model and asymp-
totic convergence of estimators. The numerical approach proposed by the authors
can be summarized as follows:

1. Let θ(0), β
(0)
j , Λ

(0)
0j (k), j = 1, 2, 3 be initial estimates. We can set θ(0) = 0,

β
(0)
j = 0 and for Λ

(0)
0j (k), j = 1, 2, 3 we use the Nelson-Aalen type estimate

of the respective cumulative hazard functions.

2. Given Λ
(0)
0j (k), j = 1, 2, 3, we update estimates of θ, e βj to θ

(1), β
(1)
j , j =

1, 2, 3, from U1, U2, U3, U4 where Ui = ∂ log(L(η))
∂βj

i = 1, 2, 3.

3. Given θ(1), β
(1)
j , j = 1, 2, 3, we solve the equations U5 = 0, U6 = 0 and

U7 = 0 for updated estimated Λ
(1)
0j (k), j = 1, 2, 3.

4. Finally, we update the initial estimates in (1) and we repeat steps (2)-(4)
until convergence.

Let Î(η̂) = −∂U(η̂)

∂η̂>
be the observed information matrix for η̂ given by the second

derivatives of log-likelihood function evaluated at maximum likelihood estimators
(MLE) for η. For large sample sizes, Î(η̂)−1 can be used to estimate asymptotic
variance of α> = (θ,β>1 ,β

>
2 ,β

>
3 ).

For the estimation of parameters of this model, we use the R package nqslv

for the numeric solutions of the score equations. For estimation of θ, β1, β2 and
β3 we use a convergence criteria ε = 0.001 and for λ01, λ02, λ03 we consider
a less restrictive criteria δ = 0.01. We did not have convergence problems and
the procedure is not much in�uenced by initial values (for regression parameters,
initial values were obtained by a Cox model).

3.2. Simulation Study

A simulation study was conducted mainly in order to compare the illness-death
frailty model with a simple regression model that does not consider the dependence
of the observed events.
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Considering the model (7), we simulated the frailty with mean 1 and variance
θ from a gamma distribution with shape and scale parameters 1/θ. We added
a random variable Z ∼ Normal (0,1) representing a covariate. We generated n
observations T1i and T2i from the Weibull distribution for both non-terminal and
terminal events: T1i ∼ Weibull with hazard function λ1i = γie

α+β1xi and T2i ∼
Weibull with hazard function λ2i = γie

α+β2xi , i = 1 · · ·n, respectively. Fixing
α = −10, we have Tki ∼Weibull(ai, bki), with ai = 2 and bki = exp{−1/ai(log γi+
α+ βkxi)} for k = 1, 2.

Since our data is subject to right-censoring, we added a proportion pc of censo-
red observations. As it is usual in real data applications, we considered both type I
and random censoring: we assume that the study ends at time τ (type I censoring)
and, if pc is not achieved, we added a random censoring with C ∼ Unif(0, τ).

We report results from 500 replications for n = 100, n = 500 and n = 800 with
β1 = 1, β2 = 1, frailty variance given by θ = 0, 5, θ = 1 and θ = 2 and, �nally, �xed
proportions of censoring pc equal to 40%, 60%, 70%. We chose a follow up time
τ = 1095 days motivated by our real data application. All computer codes were
developed for R software (for both simulation and application) and are available
upon request.

Results of mean and standard error of estimated parameters from 500 replica-
tions are summarized in Figures 2 and 3. The horizontal line corresponds to true
value of parameters β1 and β2. In general, it is possible to observe that for most
situations the illness death model was less biased than the naive Weibull model,
and it is interesting to notice that, as the variance of frailty increases, the bias
also increases. Therefore, one can conclude that the illness death model performs
very favourably in terms of bias, although the variance of estimators (and hence
the mean squared error) may be greater than the corresponding variance of the
naive Weibull model for small samples. This is expected, since there are more
parameters to be estimated in the frailty model considered.

4. Kidney Disease Data Analysis

As previously discussed, we are interested in analysing a dataset with 1253
end-stage renal disease (ESRD), stages IV and V, of CKD patients, followed from
2009 to 2011 by Fresenius Medical Care in Colombia and Laboratory Medical
Echavarria. Patients included in the analysis started dialysis treatment and were
periodically examined. Tests were performed to obtain the levels of calcium, in-
organic phosphorus, serum albumin, serum creatinine, among other blood tests.
It is of interest to study survival time of patients from beginning of dialysis tre-
atment, but it is also of interest to study the disease's progression. In this �rst
approach, it was considered that a patient experiences progression when their level
of phosphorus in the blood is greater than 5.6 mg/dl.

All patients are from �ve cities in Colombia: Manizales (280 patients), Monteria
(370 patients), Rionegro (131), Sincelejo (334) and Tunja (138) and 61.2% are
males. Regarding age, people between 51 and 65 years represent 34% of the data
and those over 66 years represent 30.6%.
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Figure 2: Simulations results for β1 = 1. Continuous lines: Illness-Death model. Dis-
continuous lines: weibull model.

An initial descriptive analysis of data was done using copula graphic estimators.
We computed the copula graphic estimator using the four copulas considered in
this work. Table 5 shows the estimates of the copula parameter and Kendall's tau
coe�cient. An important aspect in application is the choice of the copula for the
copula graphic estimator. We suggest a scatter plot of time to progression and time
to death of uncensored observations as a �rst guide and also to use several copulas
and compare the resulting plots. In our example, the estimated dependence is
positive and small for most copulas; only family B copula had a di�erent result.
Although the estimated dependence for Family B copula is di�erent form other
copulas, copula graphic estimates for the survival function are very similar, as
shown in Figure 4.

From the K-M plot of the survival distribution of patients and the copula
graphic estimator of the survival function of the progression, we can conclude that
after two years we still have around 60% of patients alive and also 60% of patients
without progression of the disease. It is important to notice that we have only two
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Figure 3: Simulations results for β2 = 1. Continuous lines: Illness-Death model. Dis-
continuous lines: weibull model.

years of follow up, and the graphics show that a longer follow up time would be
valuable for a better understanding of disease progression.

Table 5: Estimated copula parameter and dependence coe�cient, α̂ and τ̂ .

Copula α̂ (se) τ̂ (se)

Family A - Clayton copula 0,586 (0,142) 0,227 (0,042)

Family B 1,559 (0,022) -0,282 (0,018)

Family C - Frank copula 1,387 (0,295) 0,151 (0,031)

Family D - Gumbel copula 1,141 (0,038) 0,124 (0,029)

For a multivariante analysis, we �tted the model described in Section 3 and
four covariates were included: treatment (peritoneal dialysis/hemodialysis), sex
(male/female), age(≤ 30 years/ ≥ 31 and ≤ 50 years/ ≥ 51 and ≤ 65 years/ ≥ 66
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years) and city (Manizales/ Monteria/ Rionegro/ Sincelejo/ Tunja). The results
of estimated coe�cients shown in Table 6 and Table 7.
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Figure 4: Estimated marginal survival functions for disease progression (left) and death

(right).

Table 6: Estimates of Illness-death model for kidney disease analysis (death).

Time to death without progression Time to death after progression

Covar./parameter Estimate SE P value Estimate SE P value

Treat. peritoneal - - - - - -

hemodialysis -0,354 0,168 0,035 0,017 0,320 0,958

Sex female - - - - - -

male -0,162 0,157 0,301 -0,154 0,264 0,558

Age ≤ 30 - - - - - -

(years) ≥ 31 and ≤ 50 -0,108 0,279 0,697 -0,161 0,425 0,705

≥ 51 and ≤ 65 0,541 0,237 0,023 0,335 0,384 0,382

≥ 66 0,998 0,233 0,000 0,833 0,386 0,031

City Manizales - - - - - -

Monteria 0,263 0,206 0,200 0,755 0,335 0,024

Rionegro 0,259 0,382 0,499 0,917 0,560 0,101

Sincelejo 0,782 0,228 0,000 1,549 0,359 0,000

Tunja 0,633 0,302 0,036 0,538 0,454 0,236

The treatment was signi�cant for time to progession and time to death without
progression. Patients treated with hemodialysis have a higher risk of progession,
however a lower risk of death when compared to patients having peritoneal disease.
This result seems consistent with the fact that there was a smaller proportion of
patients with death without progression (67.2 %) than with progression (80.2 %)
and death after recurrence (80.6 %) in the group treated with hemodialysis.

Age is an important covariate to be included (it is signi�cant), and the results
are as expected. It is interesting to notice that age group 4 has a lower risk
of progression, however a high risk of death. Regarding the city, Monteria and
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Table 7: Estimates of Illness-death model for kidney disease analysis (progression).

Time to progression

Covar./parameter Estimate SE P value

Treat. peritoneal dialysis - - -

hemodialysis 0,439 0,134 0,001

Sex female - - -

male 0,019 0,111 0,867

Age ≤ 30 - - -

(years) ≥ 31 and ≤ 50 0,074 0,162 0,646

≥ 51 and ≤ 65 0,045 0,152 0,767

≥ 66 -0,508 0,175 0,004

City Manizales - - -

Monteria -0,466 0,144 0,001

Rionegro 0,471 0,177 0,008

Sincelejo -0,338 0,160 0,034

Tunja 0,197 0,184 0,284

θ 0,109 0,222 -

Rionegro showed signi�cant progression and death after progression e�ect, which
show us that the local where the patient is treated is an important factor that must
be included in the analysis. The covariate sex is not signi�cant in any transition
rate and the estimated dependence is positive, but not strong (τ̂ = 0.05).

It is important to notice that our approach was the use of hypothesis testing
for covariate selection, however it would be useful to implement a discrimination
criteria to help the decision of the best model, as pointed out by Lakhal & Abdous
(2008). Also goodness-of-�t methods need to be developed to both assess the
overall quality of �t in the regression model and assist the selection of a parametric
family of Archimedean copulas (although in our application the conclusions were
similar for di�erent copulas).

5. Discussion

In this work, the semicompeting risks structure approach was used to analyse
chronic kidney disease data. We focused on two events: the progression of disease
(considered as a non-terminal or intermediate event) and death (terminal event).
Although this is a preliminary analysis, the results will provide useful information
for decision-making purposes and planning politics for patient care centers.

The �rst di�culty that arises in the analysis of semicompeting risks data is to
obtain estimators of the survival function for a simple descriptive analysis or data
visualization. Given the possible dependence between the two events, the Kaplan-
Meier estimator is not suitable for estimating the marginal survival function ob-
served when the intermediate event occurs. The approach proposed by Lakhal
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& Abdous (2008) using the copula-graphic estimator in this situation seems to
have good results. The use of the Archimedean copula family proved to be quite
convenient for estimating the bivariate survival function. In general, for an initial
descriptive analysis data, the approach with copula is a very good alternative. The
selection of a particular copula of the Archimedean family can indeed in�uence the
estimates and, although the di�erences among di�erent copulas observed in the
application are not signi�cant, it would be interesting to develop a methodology
to evaluate somehow which is the most convenient copula for a given application.

When the interest is focused on e�ects of covariates and a regression model is
needed, the model proposed by Xu et al. (2010) is a very interesting alternative.
The estimation by maximum likelihood and the iterative process is quite fast,
obtaining convergence in few iterations. In this case, the baseline hazard rate
functions are not speci�ed and an usual approximation was used for estimation
(the cumulative basal hazard function is approximated by a step function that
jumps when an event is observed) which depends on the size of the sample. A
parametric approach could also be developed in order to decrease the number of
parameters to be estimated. Also, asymptotic properties of estimators have been
established, however there are not any results for small sample sizes, so we do not
recommend the use of this methodologies when the sample size is not large.

In general, the results obtained are consistent with expected by researchers
and hemodialysis results to be a good alternative in many situations. Our data
had patients form �ve di�erent cities and Manizales is known to have a wide
trajectory in the treatment of renal patients. Our results showed that Manizales
is the city with higher survival probabilities (for both death without progression
and death after progression). Rionegro and Sincelejo renal units are newer, and our
results found less favourable conditions. Regarding the fragility parameter (i.e.,
the variance of the random e�ect), the estimative obtained from the general model,

θ̂= 0.109 (0.222), indicates a weak association between progression and death. It
is also an expected result considering that the observation time of patients with
this disease was short. This is an ongoing study and a study with longer follow up
time is needed. Researches suggest to continue this study to evaluate the survival
of patients with CKD with a follow-up longer than two years and including clinic
covariates like co-morbidity, type of primary disease and manifestations or not of
extrarenal complications.
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Appendix A. The log likelihood function and score

vector of illness-death model

The log likelihood function of model (7) is

log(L(η)) =

n∑
i=1

δxi log{λ01(Si)}+ δyi(1− δxi) log{λ02(Ri)}+ δxiδyi log{λ03(Ri)}

+ δxiβ
>
1 zi + δyi(1− δxi)β

>
2 zi + δxiδyiβ

>
3 zi + δxiδyi log{(1 + θ)}

− ((1/θ) + δxi − δyi) log{1 + θ[Λ01(Si)e
β>1 zi + Λ02(Si)e

β>2 zi

+ (Λ03(Ri)− Λ03(Si))e
β>3 zi ]}. (A.1)

In order to obtain the components of the vector score of partial derivatives
from λ0R, λ0D and λ0RD, notice that Λ01(k), Λ02(k) and Λ03(k) represent the
cumulative hazard functions at time k in the sample for the time until progres-
sion, time until death without progression and time to death after progression,
respectively. Thereby, it is possible to write

Λ01(k) = λ011I{tr1<k} + λ012I{tr2<k} + · · ·+ λ01mI{trm<k} =

m∑

j=1

λ01jI{trj<k}.

Analogously, Λ02(k) =
f∑
j=1

λ02jI{tdj<k} and Λ03(k) =
g∑
j=1

λ03jI{trdj<k}. Then, the

log likelihood function log(L(η)) given in (A.1) can be written as

log(L(η)) =

n∑
i=1

δxi log{λ01(Si)}+ δyi(1− δxi) log{λ02(Ri)}+ δxiδyi log{λ03(Ri)}

+ δxiβ
>
1 zi + δyi(1− δxi)β

>
2 zi + δxiδyiβ

>
3 zi + δxiδyi log{(1 + θ)}

− ((1/θ) + δxi − δyi) log

{
1 + θ

[ m∑
j=1

λ01j I{trj<Si}e
β>1 zi +

f∑
j=1

λ02j

× I{tdj<Si}e
β>2 zi +

g∑
j=1

λ03j I{Ri≤trdj<Si}e
β>3 zi

]}
.

To simplify the expression of partial derivatives of each component of score vector
U(η), let be Ai = A1i +A2i +A3i, with

A1i = Λ01(Si) exp{β>1 zi} =
∑m
j=1 λ01jI{trj<Si}e

β>1 zi ,

A2i = Λ02(Si) exp{β>2 zi} =
∑f
j=1 λ02jI{tdj<Si}e

β>2 zi and

A3i = (Λ03(Ri)− Λ03(Si)) exp{β>3 zi} =
∑g
j=1 λ03jI{Ri≤trdj<Si}e

β>3 zi .
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Thus, the components of score vector U(η) are:

U1 =
∂

∂θ
log(L(η))

=

n∑
i=1

{
δxiδyi
1 + θ

+
n

θ2
log{1 + θAi} −

(
Ai

1 + θAi

(
1

θ
+ δxi + δyi

))}
,

U2 =
∂

∂β1
log(L(η))

=

n∑
i=1

{
δxizi −

(
1

θ
+ δxi + δyi

)
θA1izi
1 + θAi

}
,

U3 =
∂

∂β2
log(L(η))

=

n∑
i=1

{
(1− δxi)δyizi −

(
1

θ
+ δxi + δyi

)
θA2izi
1 + θAi

}
e

U4 =
∂

∂β3
log(L(η))

=

n∑
i=1

{
δxiδyizi −

(
1

θ
+ δxi + δyi

)
θA3izi
1 + θAi

}
.

Finally, the j − th components of U5, U6 and U7 are

U5j =

n∑
i=1

dtrj
λ01j

−
(

1

θ
+ δxi + δyi

) I{trj<Si}θ exp(β>1 zi)

1 + θAi
, j = 1 · · ·m,

U6j =

n∑
i=1

dtdj
λ02j

−
(

1

θ
+ δxi + δyi

) I{tdj<Si}θ exp(β>2 zi)

1 + θAi
, j = 1 · · · f,

U7j =

n∑
i=1

dtrj
λ03j

−
(

1

θ
+ δxi + δyi

) I{Si<trj≤Ri}θ exp(β>3 zi)

1 + θAi
, j = 1 · · · g.

Revista Colombiana de Estadística 42 (2019) 35�59



58 Elizabeth González Patiño, Gisela Tunes & Maria Isabel Munera

Appendix B. Simulations Results

Table B.1: Summaries from 500 replications for the illnes-death model (Par: parameter
to be estimated, pc: percentage of censoring) with di�erent frailty variance
(θ = 0.5, θ = 1, θ = 2).

N=100 N=500 N=800

Par pc 40% 60% 70% 40% 60% 70% 40% 60% 70%

θ = 0.5

θ Bias -0.124 -0.204 -0.285 -0.137 -0.206 -0.243 -0.114 -0.209 -0.233

SD 0.408 0.313 0.267 0.213 0.152 0.130 0.176 0.094 0.108

MSE 0.182 0.140 0.153 0.064 0.066 0.076 0.044 0.053 0.066

β1 Bias -0.054 -0.121 -0.199 -0.094 -0.142 -0.181 -0.075 -0.137 -0.188

SD 0.260 0.239 0.194 0.150 0.126 0.114 0.130 0.095 0.094

MSE 0.071 0.072 0.077 0.031 0.036 0.046 0.023 0.028 0.044

β2 Bias -0.036 -0.027 -0.044 -0.047 -0.048 -0.055 -0.033 -0.052 -0.042

SD 0.244 0.231 0.221 0.144 0.120 0.114 0.118 0.086 0.095

MSE 0.061 0.054 0.051 0.023 0.017 0.016 0.015 0.010 0.011

β3 Bias 0.071 0.208 0.293 -0.012 0.013 0.139 -0.030 -0.015 0.115

SD 0.359 0.434 0.508 0.192 0.217 0.254 0.155 0.174 0.194

MSE 0.134 0.231 0.344 0.037 0.047 0.084 0.025 0.030 0.051

θ = 1

θ Bias -0.193 -0.200 -0.326 -0.081 -0.318 -0.472 -0.064 -0.316 -0.466

SD 0.617 0.641 0.612 0.344 0.325 0.222 0.279 0.263 0.140

MSE 0.418 0.451 0.480 0.125 0.207 0.272 0.082 0.169 0.237

β1 Bias -0.063 -0.106 -0.203 -0.036 -0.150 -0.249 -0.033 -0.162 -0.253

SD 0.279 0.277 0.260 0.158 0.155 0.133 0.133 0.116 0.100

MSE 0.082 0.088 0.109 0.026 0.047 0.080 0.019 0.040 0.074

β2 Bias -0.059 -0.031 -0.058 0.003 -0.066 -0.104 -0.001 -0.070 -0.104

SD 0.292 0.267 0.262 0.147 0.144 0.123 0.136 0.110 0.095

MSE 0.089 0.072 0.072 0.022 0.025 0.026 0.018 0.017 0.020

β3 Bias -0.008 0.175 0.234 -0.027 -0.080 -0.040 -0.020 -0.103 -0.097

SD 0.395 0.504 0.608 0.213 0.210 0.248 0.175 0.163 0.189

MSE 0.156 0.285 0.424 0.046 0.050 0.063 0.031 0.037 0.045

θ = 2

θ Bias -0.587 -0.036 -0.236 0.115 -0.108 -0.687 0.149 -0.102 -0.756

SD 1.090 1.444 1.463 0.811 0.847 0.675 0.687 0.700 0.541

MSE 1.532 2.085 2.198 0.672 0.730 0.927 0.494 0.500 0.865

β1 Bias -0.176 -0.052 -0.181 0.007 -0.087 -0.251 0.011 -0.086 -0.274

SD 0.332 0.389 0.407 0.236 0.216 0.200 0.195 0.179 0.154

MSE 0.141 0.154 0.198 0.056 0.054 0.103 0.038 0.039 0.099

β2 Bias -0.148 -0.007 -0.030 0.022 -0.026 -0.120 0.029 -0.027 -0.148

SD 0.343 0.357 0.358 0.220 0.212 0.177 0.198 0.166 0.141

MSE 0.139 0.127 0.129 0.049 0.046 0.046 0.040 0.028 0.042

β3 Bias -0.150 0.099 0.120 0.006 -0.061 -0.148 0.022 -0.062 -0.202

SD 0.433 0.556 0.674 0.279 0.269 0.240 0.240 0.214 0.191

MSE 0.210 0.319 0.469 0.078 0.076 0.079 0.058 0.050 0.078
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Table B.2: Summaries from 500 replications for the weibull model (Par: parameter to
be estimated, pc: percentage of censoring) with di�erent frailty variance
(θ = 0.5, θ = 1, θ = 2).

N=100 N=500 N=800

Par pc 40% 60% 70% 40% 60% 70% 40% 60% 70%

θ = 0.5

β1 Bias -0.193 -0.197 -0.220 -0.248 -0.244 -0.245 -0.244 -0.241 -0.263

SD 0.152 0.171 0.168 0.090 0.099 0.098 0.070 0.075 0.078

MSE 0.060 0.068 0.077 0.070 0.069 0.070 0.065 0.064 0.075

β2 Bias -0.073 0.043 0.092 -0.085 0.012 0.065 -0.086 0.014 0.071

SD 0.142 0.157 0.182 0.079 0.092 0.091 0.065 0.069 0.075

MSE 0.025 0.027 0.042 0.013 0.009 0.012 0.012 0.005 0.011

θ = 1

β1 Bias -0.381 -0.368 -0.386 -0.429 -0.415 -0.430 -0.433 -0.430 -0.445

SD 0.176 0.178 0.204 0.100 0.107 0.106 0.082 0.083 0.088

MSE 0.176 0.167 0.191 0.194 0.183 0.196 0.194 0.192 0.206

β2 Bias -0.264 -0.121 -0.055 -0.268 -0.144 -0.086 -0.271 -0.152 -0.093

SD 0.156 0.174 0.179 0.087 0.095 0.102 0.069 0.078 0.082

MSE 0.094 0.045 0.035 0.079 0.030 0.018 0.078 0.029 0.015

θ = 2

β1 Bias -0.578 -0.559 -0.597 -0.601 -0.603 -0.608 -0.610 -0.604 -0.606

SD 0.175 0.189 0.200 0.096 0.093 0.104 0.080 0.076 0.085

MSE 0.365 0.349 0.396 0.370 0.373 0.380 0.378 0.371 0.374

β2 Bias -0.485 -0.347 -0.275 -0.500 -0.377 -0.296 -0.504 -0.379 -0.307

SD 0.162 0.167 0.198 0.087 0.101 0.105 0.067 0.076 0.086

MSE 0.261 0.148 0.115 0.257 0.152 0.099 0.258 0.149 0.102
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