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Abstract

Background: The BRCA1 c.3331_3334delCAAG founder mutation has been reported in hereditary breast and
ovarian cancer families from multiple Hispanic groups. We aimed to evaluate BRCA1 c.3331_3334delCAAG
haplotype diversity in cases of European, African, and Latin American ancestry.

Methods: BC mutation carrier cases from Colombia (n = 32), Spain (n = 13), Portugal (n = 2), Chile (n = 10), Africa
(n = 1), and Brazil (n = 2) were genotyped with the genome-wide single nucleotide polymorphism (SNP) arrays to
evaluate haplotype diversity around BRCA1 c.3331_3334delCAAG. Additional Portuguese (n = 13) and Brazilian
(n = 18) BC mutation carriers were genotyped for 15 informative SNPs surrounding BRCA1. Data were phased using
SHAPEIT2, and identical by descent regions were determined using BEAGLE and GERMLINE. DMLE+ was used to
date the mutation in Colombia and Iberia.

Results: The haplotype reconstruction revealed a shared 264.4-kb region among carriers from all six countries. The
estimated mutation age was ~ 100 generations in Iberia and that it was introduced to South America early during
the European colonization period.
(Continued on next page)
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Conclusions: Our results suggest that this mutation originated in Iberia and later introduced to Colombia and
South America at the time of Spanish colonization during the early 1500s. We also found that the Colombian
mutation carriers had higher European ancestry, at the BRCA1 gene harboring chromosome 17, than controls,
which further supported the European origin of the mutation. Understanding founder mutations in diverse
populations has implications in implementing cost-effective, ancestry-informed screening.
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Background
Breast cancer (BC) remains the most common form of cancer
and the second leading cause of cancer death among women
and about 5–10% have hereditary breast cancer, explained by
genetic susceptibility [1, 2]. Germline mutations in the tumor
suppressor gene BRCA1 account for the largest proportion of
BC susceptibility to date and confer a 55–65% lifetime risk of
developing breast cancer [2, 3]. BRCA1 has a very heteroge-
neous mutation spectrum, often having high frequency of
founder mutations in isolated populations such as the Ash-
kenazi Jewish or the Icelandic population, where few founder
mutations account for most BRCA1 carriers [4, 5].
Among Hispanic populations from Iberia and the

Americas, BRCA1 c.3331_3334delCAAG (Breast Cancer
Information Core designation: 3450del4 or rs80357903) is
one of the most widely distributed founder mutation and
reaches its highest frequency in admixed populations from
Central Colombia [6]. BRCA1 c.3331_3334delCAAG was
first described in a Canadian BC family [7], and since then
reported in Europe, Latin American, the Middle Eastern,
and North African patients [8–15]. The occurrence of
BRCA1 c.3331_3334delCAAG in different populations
may be indicative of a mutational hotspot associated with
multiple origins or a founder effect from a single ancient
mutation. Although haplotype analysis has been carried
out for BRCA1 c.3331_3334delCAAG in some of these
countries, they have been limited to a few intragenic
markers and to a limited number of populations, often
using a single individual from a carrier family [8–10].
Moreover, the BRCA1 c.3331_3334delCAAG mutation
haplotype has not been assessed on an international scale,
and the ancestral origin of BRCA1 c.3331_3334delCAAG
remains to be determined. To gain insights into its origin,
extensive haplotype analysis of BRCA1 c.3331_3334del-
CAAG was completed in carriers from six different coun-
tries, and the age of the mutation was estimated in
Colombia and Iberia. We utilized genome-wide and tar-
geted SNP data followed by imputation, haplotype phasing,
linkage disequilibrium analyses, genetic admixture estima-
tion, and mutation dating to comprehensively assess genetic
variation, spanning the entire chromosome 17, where
BRCA1 resides. Our results indicated that BRCA1 c.3331_
3334delCAAG had a single origin in Iberia.

Materials and methods
Study populations
Mutation carriers
The study was carried out using de-identified samples
from of 89 BRCA1 c.3331_3334delCAAG mutation car-
rier BC cases from Colombia (n = 32 cases from Ibague
and Neiva), Spain (n = 13), Portugal (n = 16), one of
which that originated in Angola (a former Portuguese
colony), Chile (n = 10), and Brazil (n = 18). Mutation car-
riers were previously ascertained as part of population
studies (Colombia, Chile and Brazil) or through high-
risk hereditary cancer clinics (Spain and Portugal) [10,
11, 13–16] where all individuals signed informed con-
sent forms and were recruited with locally approved
research and clinical testing protocols.

Genotyping and quality control procedures
Array genotyping
Sixty mutation carriers were genotyped with Affymetrix
Axiom Human UK Biobank single nucleotide poly-
morphism (SNP) arrays. Samples with genotyping call
rates < 95% were excluded. Basic quality control (for ge-
notypes and missingness per individual) was completed
by filtering markers with a genotype rate less than 95%,
minor allele frequency ≤ 0.05, and Hardy-Weinberg
equilibrium ≤ 0.00001. In total, 52 of the 60 samples
passed all QC procedures.

Individual SNP genotyping
As additional 31 mutation Brazilian and Portuguese
BRCA1 c.3331_3334delCAAG carriers became available
for our study after we completed the SNP genotyping, we
decided to carry out targeted genotyping of 15 SNPs
around BRCA1 (seven and eight markers on each side of
the gene, Supplementary Table 1) that were informative as
they had high heterozygosity, were roughly equally spaced
around the minimally shared haplotype, and had high call
rates in the SNP arrays. These markers were individually
genotyped with the KASP allele-specific genotyping sys-
tem (LGC Genomics, London, England) following the
manufacturer’s protocol and in reactions that included
non-template controls, two BRCA1 c.3331_3334delCAAG
carriers (positive controls) and two BRCA1 c.3331_
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3334delCAAG non-carriers (mutation negative controls).
A summary of mutation carriers and genotype data are
detailed in Supplementary Table 2.

Control SNP array data
Data available with the same SNP array on 886 Colom-
bian control matched with cases by sex and geographical
origin, were also available for analysis in this study. In
addition, for genetic admixture analyses, we used pub-
licly available genotype data from the 1000Genomes
study.

Haplotype reconstruction and IBD analysis
All analyses were carried out using GRCh37/hg19
chromosomal positions. Single nucleotide markers
(SNPs) on chromosome 17, used to obtain the haplotype
that flanks the BRCA1 c.3331_3334delCAAG mutation,
were phased using SHAPEIT [17] with the dataset of
938 (886 controls and 52 mutation carriers that passed
genotyping QC) unrelated samples. Following phasing,
BEAGLE 4.0 was used for detection of segments that
were IBD [18, 19]. The ibdtrim parameter, which speci-
fies the number of markers in a 0.15-cM region, was set
to 29 for chromosome 17. The lengths of the shared
haplotype segments were calculated based on a previous
study by Marroni et al. [20], calculated as the sum of the
distance to the last marker on either side of the BRCA1
mutation where all mutation carriers had identical al-
leles. These IBD segments were verified in parallel using
GERMLINE [21] as an alternative approach.

Phylogenetic analysis of mutation haplotypes
The distance from one individual to another was deter-
mined by subtracting the distance shared from the
length of chromosome 17. A phylogenetic tree was then
constructed utilizing the genetic distance between muta-
tion carriers with the UPGMA algorithm, which was in-
corporated in Clustal Omega [22]. This tool utilizes
bootstrap analysis of 1000 replications to assess the stat-
istical confidence in the branching order of the phylo-
genetic tree. SplitsTree 4.0 was used for visualization
(www.splitstree.org/).

Estimating the age of BRCA1 c.3331_3334delCAAG in
Iberia and Colombia
Sixty SNPs in a 4.34-Mb region flanking BRCA1 (chr17:
39040105- 43387103) were selected for mutation dating.
These markers captured the margins of the different
mutation haplotypes determined from IBD analysis,
where recombination events were observed. The
DMLE+ 2.3 software [23], developed by co-author BR,
was used to estimate the age of BRCA1 c.3331_3334del-
CAAG. The DMLE+ 2.3 algorithm exploits an intra-
allelic coalescent model to assess the linkage

disequilibrium across the marker set coupled to marker
locations, population growth rates, and an estimate for
the proportion of the disease-bearing chromosomes. For
mutation dating analyses, we focused these analyses in
Colombia and Iberia as we had the highest number of
available carriers and controls from these regions. For
Colombia, 28 BRCA1 c.3331_3334delCAAG carriers and
265 region-matched controls (from Neiva, where the
mutation reaches its highest frequency) were used for
mutation dating. From Iberia, all Spanish and Portu-
guese mutation carriers (n = 15) and 162 IBS controls
(from 1000 Genomes [24]) were used for mutation dat-
ing in the peninsula. The population growth rate was es-
timated as previously reported in Colombia and other
parts of the world [25, 26]. Map distances were esti-
mated on the basis of physical distances given by the
genetic map HapMap Phase 3.
Colombia is the country with the highest prevalence of

the BRCA1 c.3331_3334delCAAG mutation (~ 3%) in
unselected breast cancer cases [6, 8, 15], and considering
the breast cancer incidence, the proportion of mutation-
carrying chromosomes is estimated. The proportion of
mutation-carrying chromosomes sampled from
Colombia was estimated to be a minimum of f =
0.000012 (assuming an overall prevalence of BRCA1 car-
riers of 0.045) and a maximum of f = 0.00056 (assuming
an overall prevalence of BRCA1 carriers of 0.001).
Given the prevalence of BRCA1 carriers of about 1:
1000 in the general population and using 46 million
as the population of Spain, the proportion of
mutation-carrying chromosomes was estimated as f =
0.00026 for Spain [27].
Growth rate by generation was estimated with the

following equation:

Growth rategen ¼ ln Pt=Poð Þ
g

where Pt is the current population size, Po is the initial
population size, and g is the number of generations be-
tween the current population size and the population
size at the moment of mutation origin. The current
population size of Colombia is 51 million. Assuming
521 years since the Spanish arrival and 20 years per gen-
eration gives 521/20 = 26.05 generations. Assuming 1000
founders (51 × 106/1000)/(26.05) = 0.42 and assuming
100 founders (51 × 106/100)/(26.05) = 0.51. We per-
formed mutation age estimates using both values. The
generation growth rate of the Spanish population was
assumed to be between d = 0.08 and 0.11. Results were
determined using 100,000 burn-in iterations with
1,000,000 iterations in total for both Colombia and
Spain. Additional details of all mutation dating calcula-
tions are shown in the supplementary materials.
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Genetic ancestry estimation
Global ancestry
Global admixture was performed using Admixture super-
vised algorithm [28] bootstrapped 200 times and utilized a
dataset composed of 1000Genomes super populations
(Africans, American, European, East Asian, South Asian)
combined with an in-house Indigenous American dataset
which included Maya, Aymara, Mixtec, Quechua, Tlapa-
nec, and Nahua. To ensure that non-admixed individuals
were used in the reference dataset for Admixture, Eigen-
strat PCA analysis [29] was performed on the reference
dataset and individuals were plotted and filtered using 3
principal components. Only individuals clustered and on
ancestral axes that displayed no admixture were included
in reference datasets for Admixture and RFMix [30]. In
addition, Admixture was run unsupervised with K = 2 to
K = 9 on the reference dataset and global ancestries were
validated. Reference individuals from the 1000Genomes
superpopulations displaying no admixture were utilized in
Admixture and RFMix. Statistical analysis was performed
with Student’s t test to examine distributional differences
between the ancestry of carriers and non-carriers. All
values are expressed as mean ± SD. P < 0.05 was consid-
ered as statistically significant.

Local ancestry
For local ancestry estimations, samples were phased
using SHAPEIT and then local ancestry was calculated
using RFMix PopPhased option using same reference
panels as above in EM iterations, 2 EM iterations were
performed, and minimum node size of 5 was used—as
per recommended settings because the number of indi-
viduals in reference populations were skewed. Chromo-
some 17 global ancestry was calculated using Viterbi
predictions of ancestry as the sum of midpoint distances
between upstream and downstream markers divided by
total chromosome length for ancestral predictions. For
regional ancestry plots for BRCA1 mutation carriers,
counts of Amerindian, European, and African ancestry
were calculated per marker and then divided by the total
number of BRCA1 mutation carriers in the set.

Results
Haplotype analysis and genetic distance
Using BEAGLE and GERMLINE, two main mutation
haplotypes were identified among the BRCA1 mutation
carriers from the six countries (Spain, Colombia,
Portugal, Angola, Brazil, and Chile). One shared haplo-
type was 3.9 Mb long (chr17: 39907129-43807063, be-
tween markers rs55675201 and Affx-92039463), and
the other haplotype was 2.8 Mb long (chr17: 39788384-
42624404, between markers rs4076033 and rs4793119).
The first haplotype was shared among individuals from
Colombia, Angola, Portugal, Brazil, and Spain, while

the latter was shared only between Chile and Spain.
Manual inspection of the mutation region via multiple-
sequence alignment revealed a conserved haplotype
among all mutation carriers, which was likely too small
to detect using the BEAGLE or GERMLINE software.
This core mutation haplotype, as determined by BEA-
GLE (chr17: 41223094-41487451), was flanked by Affx-
13890652 and rs75854888, creating boundaries of a
264.4-kb conserved region (Fig. 1).
The largest shared mutation haplotypes were identified

among individuals from Colombia (26.5Mb, chr17:
32835986-59366049, between rs75535552 and rs7215706),
while the smallest were between carriers from the Iberian
Peninsula. This suggests that the mutation first originated
in Iberia as the length of the ancestral haplotype around
the mutation is inversely correlated with the number of
generations since it first appeared. The phylogenetic tree
of the haplotypes was consistent with the previous ana-
lysis, where two main haplotypes exist among the muta-
tion carriers. The mutation haplotype likely diverged in
Spain prior to the mutation migrating to the other coun-
tries (Fig. 2).

Portuguese and Brazilian population mutation haplotype
To verify a shared haplotype among additional Portu-
guese and Brazilian mutation carriers which became
available after SNP genotyping was completed, we geno-
typed these individuals with 15 SNPs surrounding the
BRCA1 c.3331_3334delCAAG mutation (Fig. 3). These
mutation carriers harbored a conserved mutation haplo-
type that spanned from rs2229611 to rs7214920 (Chr17:
41,063,466-45,051,129), indicating a minimum shared
haplotype of 3.9Mb. In the event that recombination
may have occurred within this large window between
markers, the two closest flanking markers rs2229611 and
rs17599948 (Chr17:41,063,466-41,353,410) to the muta-
tion produced a ~ 290-kb shared window.

Estimating chromosome 17 European ancestry among
Colombian mutation carriers
Given that the mutation likely originated from Spain, we
hypothesized that Colombian carriers would be on aver-
age, more European along chromosome 17, where
BRCA1 locates, than the average Colombian controls.
We found that local ancestry among carriers was higher
in the BRCA1 region (Fig. 4a) and that mutation carriers
had higher chromosome 17 European ancestry than
non-mutation carriers (P = 0.000116, Fig. 4b).

Estimation of allele age in Iberia and Colombia
To estimate the date of the mutation, 60 SNPs residing
within a 4.35-Mb window around the BRCA1 c.3331_
3334delCAAG mutation were chosen to be used with
the DMLE approach. For Colombia, the mutation age
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estimates in generations (posterior mean and 95% cred-
ibility interval) with f = 0.000012 were 36.3 (31.3, 44.3) as-
suming d = 0.42 and 29.7 (25.4, 36.8) assuming d = 0.51.
With f = 0.00056, the estimates were 27.6 (22.5, 36.3) as-
suming d = 0.42 and 24.8 (19.9, 32.3) assuming d = 0.51.
Assuming 20 years per generation, these mean ages range
from 496 to 726 years. For Iberia, using f = 0.00026, the

mutation age estimates were 121.0 (97.1, 153.6) assuming
d = 0.08 and 98.0 (75.9, 128.9) assuming d = 0.11. Assum-
ing 20 years per generation, these mean ages range from
1960 to 2400 years. These results support the hypothesis
that one or a small number of copies of the BRCA1 muta-
tion were introduced into Colombia via Spanish colonists
at the time of the population founding/admixture event.

Fig. 1 Multiple-sequence alignment of the mutation haplotype using genome-wide SNP. Data revealed a core haplotype (chr17: 41223094-41487451).
The conserved region has a starting marker of Affx-13890652, and ending marker of rs75854888, creating boundaries of a 264.4-kb conserved window
(dotted black box) around the mutation (location indicated by solid black line)
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Discussion
The comparison of haplotypes between individuals with
the same mutation can distinguish whether high-
frequency alleles derive from an older or more recent
single mutational event and can also determine whether
the mutation had arisen independently from multiple in-
dividuals. Our study suggests that the BRCA1 c.3331_
3334delCAAG was introduced to Colombia and South

America early in the colonization of the country, result-
ing in a high mutation prevalence in the population. The
estimated age of this mutation in Colombia is consistent
with this historical account.
Haplotype length is inversely correlated with the num-

ber of generations separating the common ancestor from
cases with the mutation in the present time. Our ap-
proach revealed a shared mutation haplotype by carriers

Fig. 2 Phylogenetic tree as calculated by genetic distance of mutation haplotype between carriers. Two main mutation haplotypes exist among
the mutation carriers, both of which encompass individuals from Iberia. Haplotype 1 harbors carriers from Colombia, Spain (predominantly from
Catalonia), Angola, Portugal, and Brazil, while haplotype 2 harbors carriers from only Spain and Chile. An early recombination event in Spain likely
occurred, as indicated by the two haplotypes sharing Spanish cases
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of six countries, multiple continents, and numerous fam-
ilies. These findings depict a history of immigration that
is consistent with ancestral links between these popula-
tions. The estimated ages from our study and ancestry
estimates in Colombian mutation carriers are consistent
with the country’s history and origin of the mutation, in
addition to the genetic demography of Colombia. The
mutation was likely introduced to the region during
early colonial times during the early 1500s, and our find-
ings in Iberia are consistent with previous dating esti-
mates for other mutations [31]. Moreover, our studies
suggest an early recombination event in Spain, which re-
sults in the two main haplotypes around the mutation.
Spanish and Portuguese colonization of Brazil, Chile,
and Colombia during the early 1500s is consistent with
the mutation distribution found in our study. In fact, the
differences in time periods of Spanish colonization and
conquest can be represented by the two main mutation
haplotypes found in this study. Interestingly, we also
found the same haplotype in a carrier from Angola, a
former Portuguese colony, and thus our findings are
consistent with the European colonization of Africa and
the Americas.
We used genome-wide SNP data to capture the muta-

tion haplotype and estimate mutation age rather than
traditional microsatellite markers, which allowed us to
comprehensively assess the mutation haplotype via IBD
analysis and multiple sequence alignment. A similar ap-
proach can be exploited for mapping new variants [32].
We recognize that there may be more to explore sur-
rounding this mutation. While we were able to date the
mutation in Iberia and Colombia, we lacked sufficient
control data for other countries, such as Chile or Brazil,
to allow us to date the mutation in such countries. We
anticipate that the mutation age in the other countries
will be related to the time of Spanish and Portuguese
colonization. We also cannot exclude that the mutation
may have multiple ancestral origins in countries without
a history of colonization by those countries, such as
Canada or Norway, where this mutation has been also
reported [7, 33]. Furthermore, while our study in
Colombia focused on communities from the central An-
dean region, where we have shown that they have a pre-
dominant European and Indigenous American ancestry
[16, 34–40], a recent study in Afro-Colombian popula-
tions from the west of the country also identified BRCA1
c.3331_3334delCAAG carriers, which may suggest add-
itional origins in other Colombian groups [41]. A similar
analysis with carriers from these populations would be
necessary to confirm this hypothesis.

Conclusions
In summary, we demonstrated the existence of a single
ancestral mutation haplotype among six different

Fig. 3 Haplotypes in 34 BRCA1 c.3331_3334delCAAG carriers
genotyped with 15 flanking SNPs. Black dashed line indicates the
location of the mutation
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countries and general mutation age in the Colombian
and Iberian populations are in agreement with historic
migration and cultural patterns. Colombian mutation
carriers have a higher European ancestry than non-
mutation carrier cases, a finding that further support a
European origin of BRCA1 c.3331_3334delCAAG. We
also highlight the advantage of utilizing genomic ap-
proaches to comprehensively assess founder mutations,
since genome-wide SNP data can be exploited to meas-
ure ancestry or genetic distance between mutation hap-
lotypes, in addition to haplotype analysis and mutation
age estimation.
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1186/s13058-020-01341-3.

Additional file 1: Supplementary Table 1. KASP primers used to type
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