Inicio
Detalle del título uniforme
NPJ Parkinson's Disease
Tipo de obra :
Autre
Naturaleza de la obra :
Oeuvre
|
Documentos disponibles con este título uniforme (1)
Clasificado(s) por (Año de edición descendente) Refinar búsqueda
Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories / Leonardo Fabio Moreno Gómez
Título : Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories Tipo de documento : documento electrónico Autores : Leonardo Fabio Moreno Gómez, Fecha de publicación : 2022 Títulos uniformes : NPJ Parkinson's Disease Idioma : Inglés (eng) Resumen : Action-concept outcomes are useful targets to identify Parkinson’s disease (PD) patients and differentiate between those with and without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks, limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs (controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD diagnosis and phenotyping. Mención de responsabilidad : Adolfo M. García, Daniel Escobar-Grisales, Juan Camilo Vásquez Correa, Yamile Bocanegra, Leonardo Moreno, Jairo Carmona & Juan Rafael Orozco-Arroyave Referencia : NPJ Parkinsons Dis. 2022 Nov 25;8(1):163. DOI (Digital Object Identifier) : 10.1038/s41531-022-00422-8 PMID : 36434017 Derechos de uso : CC BY En línea : https://www.nature.com/articles/s41531-022-00422-8 Enlace permanente : https://hospitalpablotobon.cloudbiteca.com/pmb/opac_css/index.php?lvl=notice_display&id=6081 Detecting Parkinson’s disease and its cognitive phenotypes via automated semantic analyses of action stories [documento electrónico] / Leonardo Fabio Moreno Gómez, . - 2022.
Obra : NPJ Parkinson's Disease
Idioma : Inglés (eng)
Resumen : Action-concept outcomes are useful targets to identify Parkinson’s disease (PD) patients and differentiate between those with and without mild cognitive impairment (PD-MCI, PD-nMCI). Yet, most approaches employ burdensome examiner-dependent tasks, limiting their utility. We introduce a framework capturing action-concept markers automatically in natural speech. Patients from both subgroups and controls retold an action-laden and a non-action-laden text (AT, nAT). In each retelling, we weighed action and non-action concepts through our automated Proximity-to-Reference-Semantic-Field (P-RSF) metric, for analysis via ANCOVAs (controlling for cognitive dysfunction) and support vector machines. Patients were differentiated from controls based on AT (but not nAT) P-RSF scores. The same occurred in PD-nMCI patients. Conversely, PD-MCI patients exhibited reduced P-RSF scores for both texts. Direct discrimination between patient subgroups was not systematic, but it yielded best outcomes via AT scores. Our approach outperformed classifiers based on corpus-derived embeddings. This framework opens scalable avenues to support PD diagnosis and phenotyping. Mención de responsabilidad : Adolfo M. García, Daniel Escobar-Grisales, Juan Camilo Vásquez Correa, Yamile Bocanegra, Leonardo Moreno, Jairo Carmona & Juan Rafael Orozco-Arroyave Referencia : NPJ Parkinsons Dis. 2022 Nov 25;8(1):163. DOI (Digital Object Identifier) : 10.1038/s41531-022-00422-8 PMID : 36434017 Derechos de uso : CC BY En línea : https://www.nature.com/articles/s41531-022-00422-8 Enlace permanente : https://hospitalpablotobon.cloudbiteca.com/pmb/opac_css/index.php?lvl=notice_display&id=6081 Reserva
Reservar este documentoEjemplares(1)
Código de barras Número de Ubicación Tipo de medio Ubicación Sección Estado DD001928 AC-2022-089 Archivo digital Producción Científica Artículos científicos Disponible Documentos electrónicos
AC-2022-089Adobe Acrobat PDF